OCR MEI D1 2008 January — Question 3

Exam BoardOCR MEI
ModuleD1 (Decision Mathematics 1)
Year2008
SessionJanuary
TopicFixed Point Iteration

3 The following algorithm (J. M. Oudin, 1940) claims to compute the date of Easter Sunday in the Gregorian calendar system.
The algorithm uses the year, y, to give the month, m, and day, d, of Easter Sunday.
All variables are integers and all remainders from division are dropped. For example, 7 divided by 3 is 2 remainder 1 . The remainder is dropped, giving the answer 2. $$\begin{aligned} & c = y / 100
& n = y - 19 \times ( y / 19 )
& k = ( c - 17 ) / 25
& i = c - ( c / 4 ) - ( c - k ) / 3 + ( 19 \times n ) + 15
& i = i - 30 \times ( i / 30 )
& i = i - ( i / 28 ) \times ( 1 - ( i / 28 ) \times ( 29 / ( i + 1 ) ) \times ( ( 21 - n ) / 11 ) )
& j = y + ( y / 4 ) + i + 2 - c + ( c / 4 )
& j = j - 7 \times ( j / 7 )
& p = i - j
& m = 3 + ( p + 40 ) / 44
& d = p + 28 - 31 \times ( m / 4 ) \end{aligned}$$ For example, for 2008:
\(\mathrm { y } = 2008\)
\(\mathrm { c } = 2008 / 100 = 20\)
\(n = 2008 - 19 \times ( 2008 / 19 ) = 2008 - 19 \times ( 105 ) = 13\), etc.
Complete the calculation for 2008.