6 The function \(\operatorname { INT } ( C )\) gives the largest integer that is less than or equal to \(C\).
For example: \(\operatorname { INT } ( 4.8 ) = 4 , \operatorname { INT } ( 7 ) = 7 , \operatorname { INT } ( 0.8 ) = 0 , \operatorname { INT } ( - 0.8 ) = - 1 , \operatorname { INT } ( - 2.4 ) = - 3\).
Consider the following algorithm.
| Line 10 | Input \(A\) and \(B\) |
| Line 20 | Calculate \(C = B \div A\) |
| Line 30 | Let \(D = \operatorname { INT } ( C )\) |
| Line 40 | Calculate \(E = A \times D\) |
| Line 50 | Calculate \(F = B - E\) |
| Line 60 | Output the value of \(F\) |
| Line 70 | Replace \(B\) by the value of \(D\) |
| Line 80 | If \(B = 0\) then stop, otherwise go back to line 20 |
- Apply the algorithm using the inputs \(A = 10\) and \(B = 128\). Record the values of \(A , B , C , D , E\), and \(F\) every time they change. Record the output each time line 60 is reached.
- Show what happens when the input values are \(A = 10\) and \(B = - 13\).