AQA FP3 2015 June — Question 1 3 marks

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2015
SessionJune
Marks3
TopicFixed Point Iteration

1 It is given that \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { x + y ^ { 2 } } { x }$$ and $$y ( 2 ) = 5$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.05\), to obtain an approximation to \(y ( 2.05 )\).
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 2.1 )\), giving your answer to three significant figures.
    [0pt] [3 marks]