1 It is given that \(y ( x )\) satisfies the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$
where
$$\mathrm { f } ( x , y ) = \frac { x + y ^ { 2 } } { x }$$
and
$$y ( 2 ) = 5$$
- Use the Euler formula
$$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$
with \(h = 0.05\), to obtain an approximation to \(y ( 2.05 )\).
- Use the formula
$$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$
with your answer to part (a), to obtain an approximation to \(y ( 2.1 )\), giving your answer to three significant figures.
[0pt]
[3 marks]