Area under curve using integration

A question is this type if and only if it asks to find the area of a region bounded by a curve and lines (often axes), requiring definite integration and possibly finding intersection points.

19 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
CAIE P1 2021 June Q11
11 marks Standard +0.3
11
\includegraphics[max width=\textwidth, alt={}, center]{aaba3158-b5be-464e-bea3-1a4c460f9637-16_622_1091_260_525} The diagram shows part of the curve with equation \(y = x ^ { \frac { 1 } { 2 } } + k ^ { 2 } x ^ { - \frac { 1 } { 2 } }\), where \(k\) is a positive constant.
  1. Find the coordinates of the minimum point of the curve, giving your answer in terms of \(k\).
    The tangent at the point on the curve where \(x = 4 k ^ { 2 }\) intersects the \(y\)-axis at \(P\).
  2. Find the \(y\)-coordinate of \(P\) in terms of \(k\).
    The shaded region is bounded by the curve, the \(x\)-axis and the lines \(x = \frac { 9 } { 4 } k ^ { 2 }\) and \(x = 4 k ^ { 2 }\).
  3. Find the area of the shaded region in terms of \(k\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P1 2024 June Q6
9 marks Standard +0.3
6 The curve with equation \(y = 2 x - 8 x ^ { \frac { 1 } { 2 } }\) has a minimum point at \(A\) and intersects the positive \(x\)-axis at \(B\).
  1. Find the coordinates of \(A\) and \(B\).

  2. \includegraphics[max width=\textwidth, alt={}, center]{84b3cd80-faf0-4522-8286-52bf7f86dc8a-11_522_1561_296_244} The diagram shows the curve with equation \(\mathrm { y } = 2 \mathrm { x } - 8 \mathrm { x } ^ { \frac { 1 } { 2 } }\) and the line \(A B\). It is given that the equation of \(A B\) is \(y = \frac { 2 x - 32 } { 3 }\). Find the area of the shaded region between the curve and the line.
CAIE P1 2015 June Q10
11 marks Challenging +1.2
10
\includegraphics[max width=\textwidth, alt={}, center]{c8925c7a-cb3b-43b8-9d09-8adc800c6887-4_798_805_258_669} The diagram shows part of the curve \(y = \frac { 8 } { \sqrt { } ( 3 x + 4 ) }\). The curve intersects the \(y\)-axis at \(A ( 0,4 )\). The normal to the curve at \(A\) intersects the line \(x = 4\) at the point \(B\).
  1. Find the coordinates of \(B\).
  2. Show, with all necessary working, that the areas of the regions marked \(P\) and \(Q\) are equal.
CAIE P1 2009 November Q4
7 marks Moderate -0.8
4 The equation of a curve is \(y = x ^ { 4 } + 4 x + 9\).
  1. Find the coordinates of the stationary point on the curve and determine its nature.
  2. Find the area of the region enclosed by the curve, the \(x\)-axis and the lines \(x = 0\) and \(x = 1\).
CAIE P2 2024 June Q3
8 marks Moderate -0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-04_776_483_310_769} The diagram shows the curve with equation \(y = 8 \mathrm { e } ^ { - x } - \mathrm { e } ^ { 2 x }\). The curve crosses the \(y\)-axis at the point \(A\) and the \(x\)-axis at the point \(B\). The shaded region is bounded by the curve and the two axes.
  1. Find the gradient of the curve at \(A\).
    \includegraphics[max width=\textwidth, alt={}, center]{76df3465-9617-4f2b-a8b7-f474b2817504-04_2715_35_141_2011}
  2. Show that the \(x\)-coordinate of \(B\) is \(\ln 2\) and hence find the area of the shaded region.
CAIE P2 2003 June Q3
6 marks Moderate -0.8
3
\includegraphics[max width=\textwidth, alt={}, center]{a31a4b4e-83a6-47d9-9679-3471b3da1b6e-2_488_664_863_737} The diagram shows the curve \(y = \mathrm { e } ^ { 2 x }\). The shaded region \(R\) is bounded by the curve and by the lines \(x = 0 , y = 0\) and \(x = p\).
  1. Find, in terms of \(p\), the area of \(R\).
  2. Hence calculate the value of \(p\) for which the area of \(R\) is equal to 5 . Give your answer correct to 2 significant figures.
CAIE P2 2012 June Q5
9 marks Standard +0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{beb8df77-e091-4248-812b-20e885c42e37-3_528_757_251_694} The diagram shows the curve \(y = 4 e ^ { \frac { 1 } { 2 } x } - 6 x + 3\) and its minimum point \(M\).
  1. Show that the \(x\)-coordinate of \(M\) can be written in the form \(\ln a\), where the value of \(a\) is to be stated.
  2. Find the exact value of the area of the region enclosed by the curve and the lines \(x = 0 , x = 2\) and \(y = 0\).
CAIE P2 2012 June Q5
9 marks Standard +0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{0a45a806-007f-4840-85e7-16d4c1a2c599-3_528_757_251_694} The diagram shows the curve \(y = 4 e ^ { \frac { 1 } { 2 } x } - 6 x + 3\) and its minimum point \(M\).
  1. Show that the \(x\)-coordinate of \(M\) can be written in the form \(\ln a\), where the value of \(a\) is to be stated.
  2. Find the exact value of the area of the region enclosed by the curve and the lines \(x = 0 , x = 2\) and \(y = 0\).
CAIE P2 2013 June Q7
9 marks Standard +0.3
7
  1. Find the exact area of the region bounded by the curve \(y = 1 + \mathrm { e } ^ { 2 x - 1 }\), the \(x\)-axis and the lines \(x = \frac { 1 } { 2 }\) and \(x = 2\).

  2. \includegraphics[max width=\textwidth, alt={}, center]{e3ee4932-8219-4332-9cd2-e7f835522469-3_469_719_397_753} The diagram shows the curve \(y = \frac { \mathrm { e } ^ { 2 x } } { \sin 2 x }\) for \(0 < x < \frac { 1 } { 2 } \pi\), and its minimum point \(M\). Find the exact \(x\)-coordinate of \(M\).
CAIE P2 2015 June Q4
7 marks Standard +0.3
4
\includegraphics[max width=\textwidth, alt={}, center]{cc051d68-7e21-4dc1-b34d-6fb7f12a52fd-2_524_625_1425_758} The diagram shows the curve \(y = \mathrm { e } ^ { x } + 4 \mathrm { e } ^ { - 2 x }\) and its minimum point \(M\).
  1. Show that the \(x\)-coordinate of \(M\) is \(\ln 2\).
  2. The region shaded in the diagram is enclosed by the curve and the lines \(x = 0 , x = \ln 2\) and \(y = 0\). Use integration to show that the area of the shaded region is \(\frac { 5 } { 2 }\).
CAIE P2 2015 June Q4
7 marks Standard +0.3
4
\includegraphics[max width=\textwidth, alt={}, center]{3b217eb4-3bd3-4800-a913-749754bf109f-2_524_625_1425_758} The diagram shows the curve \(y = \mathrm { e } ^ { x } + 4 \mathrm { e } ^ { - 2 x }\) and its minimum point \(M\).
  1. Show that the \(x\)-coordinate of \(M\) is \(\ln 2\).
  2. The region shaded in the diagram is enclosed by the curve and the lines \(x = 0 , x = \ln 2\) and \(y = 0\). Use integration to show that the area of the shaded region is \(\frac { 5 } { 2 }\).
CAIE P3 2010 June Q5
8 marks Standard +0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{c5ec981d-7ff7-4698-82c4-eb0506b635a3-2_515_1031_1384_555} The diagram shows the curve \(y = \mathrm { e } ^ { - x } - \mathrm { e } ^ { - 2 x }\) and its maximum point \(M\). The \(x\)-coordinate of \(M\) is denoted by \(p\).
  1. Find the exact value of \(p\).
  2. Show that the area of the shaded region bounded by the curve, the \(x\)-axis and the line \(x = p\) is equal to \(\frac { 1 } { 8 }\).
CAIE P2 2002 November Q6
9 marks Moderate -0.8
6
  1. Find the value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } ( \sin 2 x + \cos x ) \mathrm { d } x\).

  2. \includegraphics[max width=\textwidth, alt={}, center]{9894d97f-3b7b-4dbe-b94a-2c8415442038-3_517_880_422_669} The diagram shows part of the curve \(y = \frac { 1 } { x + 1 }\). The shaded region \(R\) is bounded by the curve and by the lines \(x = 1 , y = 0\) and \(x = p\).
    1. Find, in terms of \(p\), the area of \(R\).
    2. Hence find, correct to 1 decimal place, the value of \(p\) for which the area of \(R\) is equal to 2 .
CAIE P2 2006 November Q6
9 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{4029c46c-50a1-4d23-bc29-589417a6b7f5-3_501_497_269_826} The diagram shows the part of the curve \(y = \frac { \mathrm { e } ^ { 2 x } } { x }\) for \(x > 0\), and its minimum point \(M\).
  1. Find the coordinates of \(M\).
  2. Use the trapezium rule with 2 intervals to estimate the value of $$\int _ { 1 } ^ { 2 } \frac { \mathrm { e } ^ { 2 x } } { x } \mathrm {~d} x$$ giving your answer correct to 1 decimal place.
  3. State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of the true value of the integral in part (ii).
  4. Given that \(y = \tan 2 x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  5. Hence, or otherwise, show that $$\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \sec ^ { 2 } 2 x \mathrm {~d} x = \frac { 1 } { 2 } \sqrt { } 3$$ and, by using an appropriate trigonometrical identity, find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \tan ^ { 2 } 2 x \mathrm {~d} x\).
  6. Use the identity \(\cos 4 x \equiv 2 \cos ^ { 2 } 2 x - 1\) to find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \frac { 1 } { 1 + \cos 4 x } \mathrm {~d} x$$
Edexcel P2 2019 June Q10
11 marks Moderate -0.3
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fc9cd828-f9bc-4cad-8a70-4214697b1c6a-11_707_855_255_539} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with equation \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = \frac { 36 } { x ^ { 2 } } + 2 x - 13 \quad x > 0$$ Using calculus,
  1. find the range of values of \(x\) for which \(\mathrm { f } ( x )\) is increasing,
  2. show that \(\int _ { 2 } ^ { 9 } \left( \frac { 36 } { x ^ { 2 } } + 2 x - 13 \right) \mathrm { d } x = 0\) The point \(P ( 2,0 )\) and the point \(Q ( 6,0 )\) lie on \(C\).
    Given \(\int _ { 2 } ^ { 6 } \left( \frac { 36 } { x ^ { 2 } } + 2 x - 13 \right) \mathrm { d } x = - 8\)
    1. state the value of \(\int _ { 6 } ^ { 9 } \left( \frac { 36 } { x ^ { 2 } } + 2 x - 13 \right) \mathrm { d } x\)
    2. find the value of the constant \(k\) such that \(\int _ { 2 } ^ { 6 } \left( \frac { 36 } { x ^ { 2 } } + 2 x + k \right) \mathrm { d } x = 0\)
Edexcel P2 2019 October Q8
9 marks Moderate -0.3
8. Solutions relying on calculator technology are not acceptable in this question.
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{bfeb1724-9a00-4a36-9606-520395792b2b-22_556_822_351_561} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows a sketch of part of a curve with equation $$y = \frac { 8 \sqrt { x } - 5 } { 2 x ^ { 2 } } \quad x > 0$$ The region \(R\), shown shaded in Figure 2, is bounded by the curve, the line with equation \(x = 2\), the \(x\)-axis and the line with equation \(x = 4\) Find the exact area of \(R\).
  2. Find the value of the constant \(k\) such that $$\int _ { - 3 } ^ { 6 } \left( \frac { 1 } { 2 } x ^ { 2 } + k \right) \mathrm { d } x = 55$$
OCR C2 Q7
9 marks Moderate -0.3
7.
\includegraphics[max width=\textwidth, alt={}, center]{e5d62032-84ad-4e0b-9b72-ccfd8f4dbac8-3_499_721_248_552} The diagram shows part of the curve \(y = \mathrm { f } ( x )\) where \(\mathrm { f } ( x ) = \frac { 1 - 8 x ^ { 3 } } { x ^ { 2 } } , x \neq 0\).
  1. Solve the equation \(\mathrm { f } ( x ) = 0\).
  2. Find \(\int \mathrm { f } ( x ) \mathrm { d } x\).
  3. Find the area of the shaded region bounded by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis and the line \(x = 2\).
Edexcel AEA 2013 June Q6
16 marks Hard +2.3
6.(a)Starting from \([ \mathrm { f } ( x ) - \lambda \mathrm { g } ( x ) ] ^ { 2 } \geqslant 0\) show that \(\lambda\) satisfies the quadratic inequality $$\left( \int _ { a } ^ { b } [ \operatorname { g } ( x ) ] ^ { 2 } \mathrm {~d} x \right) \lambda ^ { 2 } - 2 \left( \int _ { a } ^ { b } \mathrm { f } ( x ) \mathrm { g } ( x ) \mathrm { d } x \right) \lambda + \int _ { a } ^ { b } [ \mathrm { f } ( x ) ] ^ { 2 } \mathrm {~d} x \geqslant 0$$ where \(a\) and \(b\) are constants and \(\lambda\) can take any real value.
(2)
(b)Hence prove that $$\left[ \int _ { a } ^ { b } \mathrm { f } ( x ) \mathrm { g } ( x ) \mathrm { d } x \right] ^ { 2 } \leqslant \left[ \int _ { a } ^ { b } [ \mathrm { f } ( x ) ] ^ { 2 } \mathrm {~d} x \right] \times \left[ \int _ { a } ^ { b } [ \mathrm {~g} ( x ) ] ^ { 2 } \mathrm {~d} x \right]$$ (c)By letting \(\mathrm { f } ( x ) = 1\) and \(\mathrm { g } ( x ) = \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 2 } }\) show that $$\int _ { - 1 } ^ { 2 } \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x \leqslant \frac { 9 } { 2 }$$ (d)Show that \(\int _ { - 1 } ^ { 2 } x ^ { 2 } \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 4 } } \mathrm {~d} x = \frac { 12 \sqrt { } 3 } { 5 }\)
(e)Hence show that $$\frac { 144 } { 55 } \leqslant \int _ { - 1 } ^ { 2 } \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x$$
Edexcel AEA 2017 June Q7
21 marks Challenging +1.8
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{15e3f7f2-a77c-4ee4-8f0a-ac739e9fede5-7_583_1198_217_440} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows part of the curve \(C\) with equation \(y = x ^ { 4 } - 10 x ^ { 3 } + 33 x ^ { 2 } - 34 x\) and the line \(L\) with equation \(y = m x + c\) . The line \(L\) touches \(C\) at the points \(P\) and \(Q\) with \(x\) coordinates \(p\) and \(q\) respectively.
(a)Explain why $$x ^ { 4 } - 10 x ^ { 3 } + 33 x ^ { 2 } - ( 34 + m ) x - c = ( x - p ) ^ { 2 } ( x - q ) ^ { 2 }$$ The finite region \(R\) ,shown shaded in Figure 3,is bounded by \(C\) and \(L\) .
(b)Use integration by parts to show that the area of \(R\) is \(\frac { ( q - p ) ^ { 5 } } { 30 }\)
(c)Show that $$( x - p ) ^ { 2 } ( x - q ) ^ { 2 } = x ^ { 4 } - 2 ( p + q ) x ^ { 3 } + S x ^ { 2 } - T x + U$$ where \(S , T\) and \(U\) are expressions to be found in terms of \(p\) and \(q\) .
(d)Using part(a)and part(c)find the value of \(p\) ,the value of \(q\) and the equation of \(L\) .