Edexcel AEA 2013 June — Question 6

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2013
SessionJune
TopicStandard Integrals and Reverse Chain Rule

6.(a)Starting from \([ \mathrm { f } ( x ) - \lambda \mathrm { g } ( x ) ] ^ { 2 } \geqslant 0\) show that \(\lambda\) satisfies the quadratic inequality $$\left( \int _ { a } ^ { b } [ \operatorname { g } ( x ) ] ^ { 2 } \mathrm {~d} x \right) \lambda ^ { 2 } - 2 \left( \int _ { a } ^ { b } \mathrm { f } ( x ) \mathrm { g } ( x ) \mathrm { d } x \right) \lambda + \int _ { a } ^ { b } [ \mathrm { f } ( x ) ] ^ { 2 } \mathrm {~d} x \geqslant 0$$ where \(a\) and \(b\) are constants and \(\lambda\) can take any real value.
(2)
(b)Hence prove that $$\left[ \int _ { a } ^ { b } \mathrm { f } ( x ) \mathrm { g } ( x ) \mathrm { d } x \right] ^ { 2 } \leqslant \left[ \int _ { a } ^ { b } [ \mathrm { f } ( x ) ] ^ { 2 } \mathrm {~d} x \right] \times \left[ \int _ { a } ^ { b } [ \mathrm {~g} ( x ) ] ^ { 2 } \mathrm {~d} x \right]$$ (c)By letting \(\mathrm { f } ( x ) = 1\) and \(\mathrm { g } ( x ) = \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 2 } }\) show that $$\int _ { - 1 } ^ { 2 } \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x \leqslant \frac { 9 } { 2 }$$ (d)Show that \(\int _ { - 1 } ^ { 2 } x ^ { 2 } \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 4 } } \mathrm {~d} x = \frac { 12 \sqrt { } 3 } { 5 }\)
(e)Hence show that $$\frac { 144 } { 55 } \leqslant \int _ { - 1 } ^ { 2 } \left( 1 + x ^ { 3 } \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x$$