Edexcel P2 2019 October — Question 8

Exam BoardEdexcel
ModuleP2 (Pure Mathematics 2)
Year2019
SessionOctober
TopicStandard Integrals and Reverse Chain Rule

8. Solutions relying on calculator technology are not acceptable in this question.
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{bfeb1724-9a00-4a36-9606-520395792b2b-22_556_822_351_561} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows a sketch of part of a curve with equation $$y = \frac { 8 \sqrt { x } - 5 } { 2 x ^ { 2 } } \quad x > 0$$ The region \(R\), shown shaded in Figure 2, is bounded by the curve, the line with equation \(x = 2\), the \(x\)-axis and the line with equation \(x = 4\) Find the exact area of \(R\).
  2. Find the value of the constant \(k\) such that $$\int _ { - 3 } ^ { 6 } \left( \frac { 1 } { 2 } x ^ { 2 } + k \right) \mathrm { d } x = 55$$