Find curve equation from derivative

A question is this type if and only if it gives dy/dx (or f'(x)) and a point on the curve, and asks to find the equation y = f(x).

81 questions · Moderate -0.7

Sort by: Default | Easiest first | Hardest first
OCR C2 Q6
8 marks Moderate -0.3
  1. Given that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x ^ { 3 } - 4 } { x ^ { 3 } } , \quad x \neq 0$$ and that \(y = 0\) when \(x = - 1\), find the value of \(y\) when \(x = 2\).
OCR C2 Q3
6 marks Moderate -0.8
3. The curve with equation \(y = \mathrm { f } ( x )\) passes through the point (8, 7). Given that $$f ^ { \prime } ( x ) = 4 x ^ { \frac { 1 } { 3 } } - 5$$ find \(\mathrm { f } ( x )\).
OCR C2 Q6
8 marks Moderate -0.8
6. Given that $$\mathrm { f } ^ { \prime } ( x ) = 5 + \frac { 4 } { x ^ { 2 } } , \quad x \neq 0$$
  1. find an expression for \(\mathrm { f } ( x )\). Given also that $$\mathrm { f } ( 2 ) = 2 \mathrm { f } ( 1 ) ,$$
  2. find \(\mathrm { f } ( 4 )\).
OCR C2 Q8
12 marks Moderate -0.8
  1. (i) The gradient of a curve is given by
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 - \frac { 2 } { x ^ { 2 } } , \quad x \neq 0$$ Find an equation for the curve given that it passes through the point \(( 2,6 )\).
(ii) Show that $$\int _ { 2 } ^ { 3 } \left( 6 \sqrt { x } - \frac { 4 } { \sqrt { x } } \right) d x = k \sqrt { 3 }$$ where \(k\) is an integer to be found.
OCR C2 Q5
7 marks Moderate -0.3
5. (i) Find $$\int \left( 8 x - \frac { 2 } { x ^ { 3 } } \right) \mathrm { d } x$$ The gradient of a curve is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 8 x - \frac { 2 } { x ^ { 3 } } , \quad x \neq 0$$ and the curve passes through the point \(( 1,1 )\).
(ii) Show that the equation of the curve can be written in the form $$y = \left( a x + \frac { b } { x } \right) ^ { 2 }$$ where \(a\) and \(b\) are integers to be found.
OCR MEI C2 Q11
4 marks Moderate -0.8
11 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 - x ^ { 2 }\). The curve passes through the point \(( 6,1 )\). Find the equation of the curve.
OCR MEI C2 Q2
5 marks Moderate -0.8
2 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 6 } { x ^ { 3 } }\). The curve passes through \(( 1,4 )\).
Find the equation of the curve.
OCR MEI C2 Q2
5 marks Moderate -0.8
2 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 18 } { x ^ { 3 } } + 2\). The curve passes through the point \(( 3,6 )\). Find the
equation of the curve. equation of the curve.
OCR MEI C2 Q3
5 marks Moderate -0.8
3 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 x ^ { \frac { 1 } { 2 } } - 5\). Given also that the curve passes through the point (4, 20), find the equation of the curve.
OCR MEI C2 Q5
5 marks Moderate -0.8
5 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 \sqrt { x } - 2\). Given also that the curve passes through the point \(( 9,4 )\), find the equation of the curve.
OCR MEI C2 2012 June Q7
5 marks Moderate -0.8
7 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 x ^ { \frac { 1 } { 2 } } - 5\). Given also that the curve passes through the point (4, 20), find the equation of the curve.
OCR MEI C2 2013 June Q3
5 marks Moderate -0.8
3 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 18 } { x ^ { 3 } } + 2\). The curve passes through the point \(( 3,6 )\). Find the equation of the curve.
OCR PURE 2022 May Q5
8 marks Moderate -0.8
5 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 } - 3 x\). The curve passes through the point (6, 20).
  1. Determine the equation of the curve.
  2. Hence determine \(\int _ { 1 } ^ { p } y \mathrm {~d} x\) in terms of the constant \(p\).
OCR MEI AS Paper 1 2022 June Q6
8 marks Moderate -0.8
6 The gradient of a curve is given by the equation \(\frac { d y } { d x } = 6 x ^ { 2 } - 20 x + 6\). The curve passes through the point \(( 2,6 )\).
  1. Find the equation of the curve.
  2. Verify that the equation of the curve can be written as \(y = 2 ( x + 1 ) ( x - 3 ) ^ { 2 }\).
  3. Sketch the curve, indicating the points where the curve meets the axes.
OCR MEI AS Paper 1 2021 November Q7
6 marks Moderate -0.3
7 The diagram shows part of a curve which passes through the point \(( 1,0 )\).
\includegraphics[max width=\textwidth, alt={}, center]{5428eabf-431d-4db1-8c25-1f2b9570d9aa-4_711_704_1722_258} The gradient of the curve is given by \(\frac { d y } { d x } = 6 x + \frac { 8 } { x ^ { 3 } }\).
Determine whether the curve passes through the point \(( 2,12 )\).
Edexcel C1 Q5
7 marks Easy -1.2
5. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 5 + \frac { 1 } { x ^ { 2 } }$$
  1. Use integration to find \(y\) in terms of \(x\).
  2. Given that \(y = 7\) when \(x = 1\), find the value of \(y\) at \(x = 2\).
Edexcel C1 Q4
9 marks Moderate -0.8
  1. The curve \(C\) with equation \(y = \mathrm { f } ( x )\) is such that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 \sqrt { } x + \frac { 12 } { \sqrt { } x } , \quad x > 0$$
  1. Show that, when \(x = 8\), the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) is \(9 \sqrt { } 2\). The curve \(C\) passes through the point \(( 4,30 )\).
  2. Using integration, find \(\mathrm { f } ( x )\).
Edexcel C1 Q1
7 marks Easy -1.2
1. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 5 + \frac { 1 } { x ^ { 2 } } .$$
  1. Use integration to find \(y\) in terms of \(x\).
  2. Given that \(y = 7\) when \(x = 1\), find the value of \(y\) at \(x = 2\).
Edexcel C1 Q6
7 marks Moderate -0.8
6. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 5 + \frac { 1 } { x ^ { 2 } } .$$
  1. Use integration to find \(y\) in terms of \(x\).
  2. Given that \(y = 7\) when \(x = 1\), find the value of \(y\) at \(x = 2\).
Edexcel C1 Q5
9 marks Moderate -0.8
5. The curve \(C\) with equation \(y = \mathrm { f } ( x )\) is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 \sqrt { } x + \frac { 12 } { \sqrt { } x } , x > 0\).
  1. Show that, when \(x = 8\), the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) is \(9 \sqrt { } 2\). The curve \(C\) passes through the point \(( 4,30 )\).
  2. Using integration, find \(\mathrm { f } ( x )\).
Edexcel C1 Q4
6 marks Easy -1.3
4. Given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 x ^ { 3 } + 1 ,$$ and that \(y = 3\) when \(x = 0\), find the value of \(y\) when \(x = 2\).
Edexcel C1 Q6
7 marks Moderate -0.8
  1. Given that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 \sqrt { x } - x ^ { 2 }$$ and that \(y = \frac { 2 } { 3 }\) when \(x = 1\), find the value of \(y\) when \(x = 4\).
Edexcel C1 Q10
13 marks Moderate -0.3
10. The curve \(C\) has the equation \(y = \mathrm { f } ( x )\). Given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 8 x - \frac { 2 } { x ^ { 3 } } , \quad x \neq 0$$ and that the point \(P ( 1,1 )\) lies on \(C\),
  1. find an equation for the tangent to \(C\) at \(P\) in the form \(y = m x + c\),
  2. find an equation for \(C\),
  3. find the \(x\)-coordinates of the points where \(C\) meets the \(x\)-axis, giving your answers in the form \(k \sqrt { 2 }\).
Edexcel C1 Q5
7 marks Moderate -0.8
  1. The curve \(y = \mathrm { f } ( x )\) passes through the point \(P ( - 1,3 )\) and is such that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 1 } { x ^ { 2 } } , \quad x \neq 0 .$$
  1. Using integration, find \(\mathrm { f } ( x )\).
  2. Sketch the curve \(y = \mathrm { f } ( x )\) and write down the equations of its asymptotes.
Edexcel C1 Q10
12 marks Moderate -0.3
10. The curve \(C\) has the equation \(y = \mathrm { f } ( x )\). Given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 - \frac { 2 } { x ^ { 2 } } , \quad x \neq 0 ,$$ and that the point \(A\) on \(C\) has coordinates (2, 6),
  1. find an equation for \(C\),
  2. find an equation for the tangent to \(C\) at \(A\), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers,
  3. show that the line \(y = x + 3\) is also a tangent to \(C\).