Find curve equation from derivative

A question is this type if and only if it gives dy/dx (or f'(x)) and a point on the curve, and asks to find the equation y = f(x).

81 questions · Moderate -0.7

Sort by: Default | Easiest first | Hardest first
Edexcel C1 Q7
8 marks Moderate -0.8
7. Given that $$\mathrm { f } ^ { \prime } ( x ) = 5 + \frac { 4 } { x ^ { 2 } } , \quad x \neq 0$$
  1. find an expression for \(\mathrm { f } ( x )\). Given also that
    f(2) = 2f(1),
  2. find \(\mathrm { f } ( 4 )\).
AQA C2 2010 January Q2
7 marks Moderate -0.8
2 At the point \(( x , y )\) on a curve, where \(x > 0\), the gradient is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 7 \sqrt { x ^ { 5 } } - 4$$
  1. Write \(\sqrt { x ^ { 5 } }\) in the form \(x ^ { k }\), where \(k\) is a fraction.
  2. Find \(\int \left( 7 \sqrt { x ^ { 5 } } - 4 \right) \mathrm { d } x\).
  3. Hence find the equation of the curve, given that the curve passes through the point \(( 1,3 )\).
OCR MEI C2 2010 June Q6
5 marks Moderate -0.8
6 The gradient of a curve is \(6 x ^ { 2 } + 12 x ^ { \frac { 1 } { 2 } }\). The curve passes through the point \(( 4,10 )\). Find the equation of the curve.
OCR C2 Q5
8 marks Moderate -0.8
5. The curve \(y = \mathrm { f } ( x )\) passes through the point \(P ( - 1,3 )\) and is such that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 4 } { x ^ { 3 } } , \quad x \neq 0$$
  1. Find \(\mathrm { f } ( x )\).
  2. Show that the area of the finite region bounded by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4\) is \(4 \frac { 1 } { 2 }\).
AQA AS Paper 2 2023 June Q3
5 marks Easy -1.2
3
  1. Find \(\int \left( 2 x ^ { 3 } + \frac { 8 } { x ^ { 2 } } \right) \mathrm { d } x\) 3
  2. A curve has gradient function \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 x ^ { 3 } + \frac { 8 } { x ^ { 2 } }\)
    The \(x\)-intercept of the curve is at the point \(( 2,0 )\)
    Find the equation of the curve.
    Fully justify your answer.
    \(4 \quad\) Find the exact solution of the equation \(\ln ( x + 1 ) + \ln ( x - 1 ) = \ln 15 - 2 \ln 7\)
AQA Paper 3 2024 June Q6
5 marks Easy -1.2
6
  1. Find \(\int \left( 6 x ^ { 2 } - \frac { 5 } { \sqrt { x } } \right) \mathrm { d } x\) 6
  2. The gradient of a curve is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 6 x ^ { 2 } - \frac { 5 } { \sqrt { x } }$$ The curve passes through the point \(( 4,90 )\). Find the equation of the curve.