Find curve equation from derivative

A question is this type if and only if it gives dy/dx (or f'(x)) and a point on the curve, and asks to find the equation y = f(x).

81 questions · Moderate -0.7

Sort by: Default | Easiest first | Hardest first
CAIE P1 2009 November Q1
4 marks Moderate -0.8
1 The equation of a curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 } { \sqrt { x } } - x\). Given that the curve passes through the point (4,6), find the equation of the curve.
CAIE P1 2012 November Q2
4 marks Easy -1.2
2 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 8 } { x ^ { 3 } } - 1\) and the point \(( 2,4 )\) lies on the curve. Find the equation of the curve.
CAIE P1 2012 November Q10
8 marks Moderate -0.8
10 A curve is defined for \(x > 0\) and is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = x + \frac { 4 } { x ^ { 2 } }\). The point \(P ( 4,8 )\) lies on the curve.
  1. Find the equation of the curve.
  2. Show that the gradient of the curve has a minimum value when \(x = 2\) and state this minimum value.
CAIE P1 2013 November Q2
5 marks Moderate -0.3
2 A curve has equation \(y = f ( x )\). It is given that \(f ^ { \prime } ( x ) = \frac { 1 } { \sqrt { } ( x + 6 ) } + \frac { 6 } { x ^ { 2 } }\) and that \(f ( 3 ) = 1\). Find \(f ( x )\).
CAIE P1 2013 November Q2
4 marks Moderate -0.8
2 A curve has equation \(y = \mathrm { f } ( x )\). It is given that \(\mathrm { f } ^ { \prime } ( x ) = x ^ { - \frac { 3 } { 2 } } + 1\) and that \(\mathrm { f } ( 4 ) = 5\). Find \(\mathrm { f } ( x )\).
CAIE P1 2015 November Q2
3 marks Easy -1.3
2 The function f is such that \(\mathrm { f } ^ { \prime } ( x ) = 3 x ^ { 2 } - 7\) and \(\mathrm { f } ( 3 ) = 5\). Find \(\mathrm { f } ( x )\).
CAIE P1 2016 November Q10
12 marks Moderate -0.3
10 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { a } x ^ { - \frac { 1 } { 2 } } + a x ^ { - \frac { 3 } { 2 } }\), where \(a\) is a positive constant. The point \(A \left( a ^ { 2 } , 3 \right)\) lies on the curve. Find, in terms of \(a\),
  1. the equation of the tangent to the curve at \(A\), simplifying your answer,
  2. the equation of the curve. It is now given that \(B ( 16,8 )\) also lies on the curve.
  3. Find the value of \(a\) and, using this value, find the distance \(A B\).
CAIE P1 2019 November Q3
4 marks Moderate -0.8
3 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { k } { \sqrt { } x }\), where \(k\) is a constant. The points \(P ( 1 , - 1 )\) and \(Q ( 4,4 )\) lie on the curve. Find the equation of the curve.
CAIE P1 Specimen Q2
3 marks Easy -1.2
2 The function f is such that \(\mathrm { f } ^ { \prime } ( x ) = 3 x ^ { 2 } - 7\) and \(\mathrm { f } ( 3 ) = 5\). Find \(\mathrm { f } ( x )\).
CAIE P2 2013 June Q1
4 marks Moderate -0.8
1 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 } { 7 - 2 x }\). The point \(( 3,2 )\) lies on the curve. Find the equation of the curve.
CAIE P2 2005 November Q6
9 marks Moderate -0.8
6 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { e } ^ { 2 x } - 2 \mathrm { e } ^ { - x }\). The point \(( 0,1 )\) lies on the curve.
  1. Find the equation of the curve.
  2. The curve has one stationary point. Find the \(x\)-coordinate of this point and determine whether it is a maximum or a minimum point.
Edexcel P1 2019 January Q12
9 marks Moderate -0.3
12. The curve with equation \(y = \mathrm { f } ( x ) , x > 0\), passes through the point \(P ( 4 , - 2 )\). Given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x \sqrt { x } - 10 x ^ { - \frac { 1 } { 2 } }$$
  1. find the equation of the tangent to the curve at \(P\), writing your answer in the form \(y = m x + c\), where \(m\) and \(c\) are integers to be found.
  2. Find \(\mathrm { f } ( x )\).
Edexcel P1 2021 January Q9
11 marks Moderate -0.3
9. (i) Find $$\int \frac { ( 3 x + 2 ) ^ { 2 } } { 4 \sqrt { x } } \mathrm {~d} x \quad x > 0$$ giving your answer in simplest form.
(ii) A curve \(C\) has equation \(y = \mathrm { f } ( x )\). Given
  • \(\mathrm { f } ^ { \prime } ( x ) = x ^ { 2 } + a x + b\) where \(a\) and \(b\) are constants
  • the \(y\) intercept of \(C\) is - 8
  • the point \(P ( 3 , - 2 )\) lies on \(C\)
  • the gradient of \(C\) at \(P\) is 2
    find, in simplest form, \(\mathrm { f } ( x )\).
\includegraphics[max width=\textwidth, alt={}, center]{6a5d0ffc-a725-404b-842a-f3b6000e6fed-31_2255_50_314_34}
Edexcel P1 2019 June Q8
9 marks Moderate -0.3
  1. The curve \(C\) with equation \(y = \mathrm { f } ( x ) , \quad x > 0\), passes through the point \(P ( 4,1 )\).
Given that \(\mathrm { f } ^ { \prime } ( x ) = 4 \sqrt { x } - 2 - \frac { 8 } { 3 x ^ { 2 } }\)
  1. find the equation of the normal to \(C\) at \(P\). Write your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers to be found.
    (4)
  2. Find \(\mathrm { f } ( x )\).
    (5)
    \href{http://www.dynamicpapers.com}{www.dynamicpapers.com}
Edexcel P1 2020 October Q9
6 marks Moderate -0.3
9. A curve with equation \(y = \mathrm { f } ( x )\) passes through the point \(( 9,10 )\). Given that $$f ^ { \prime } ( x ) = 27 x ^ { 2 } - \frac { 21 x ^ { 3 } - 5 x } { 2 \sqrt { x } } \quad x > 0$$ find \(\mathrm { f } ( x )\), fully simplifying each term.
Edexcel P1 2022 October Q5
9 marks Moderate -0.3
  1. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
The curve \(C\) has equation \(y = \mathrm { f } ( x ) , x > 0\)
Given that
  • \(\mathrm { f } ^ { \prime } ( \mathrm { x } ) = \frac { 12 } { \sqrt { \mathrm { x } } } + \frac { x } { 3 } - 4\)
  • the point \(P ( 9,8 )\) lies on \(C\)
    1. find, in simplest form, \(\mathrm { f } ( x )\)
The line \(l\) is the normal to \(C\) at \(P\)
  • Find the coordinates of the point at which \(l\) crosses the \(y\)-axis.
  • Edexcel P1 2018 Specimen Q7
    5 marks Moderate -0.8
    7. A curve with equation \(y = \mathrm { f } ( x )\) passes through the point \(( 4,25 )\) Given that $$\mathrm { f } ^ { \prime } ( x ) = \frac { 3 } { 8 } x ^ { 2 } - 10 x ^ { - \frac { 1 } { 2 } } + 1 , \quad x > 0$$ find \(\mathrm { f } ( x )\), simplifying each term. $$\begin{aligned} & \therefore F ( x ) = \int F ^ { \prime } ( x ) = \int 3 / 8 x ^ { 2 } - 10 x ^ { - 1 / 2 } + 1 d x \\ & F ( x ) = \frac { 3 x ^ { 3 } } { 8 ( 3 ) } - \frac { 10 x ^ { 1 / 2 } } { 1 / 2 } + x + c \\ & F ( x ) = 1 / 8 x ^ { 3 } - 20 x ^ { 1 / 2 } + x + c \\ & 25 = 1 / 8 ( 4 ) ^ { 3 } - 20 ( 4 ) ^ { 1 / 2 } + 4 + c \\ & 25 = 8 - 40 + 4 + c \\ & C = 53 \\ & F ( x ) = 1 / 8 x ^ { 3 } - 20 x ^ { 1 / 2 } + x + 53 \end{aligned}$$ \section*{PMT PhysicsAndMathsTutor.com}
    Edexcel C12 2018 June Q11
    10 marks Moderate -0.3
    11. The curve \(C\) has equation \(y = \mathrm { f } ( x ) , x > 0\), where $$f ^ { \prime } ( x ) = \frac { 5 x ^ { 2 } + 4 } { 2 \sqrt { x } } - 5$$ It is given that the point \(P ( 4,14 )\) lies on \(C\).
    1. Find \(\mathrm { f } ( x )\), writing each term in a simplified form.
    2. Find the equation of the tangent to \(C\) at the point \(P\), giving your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants.
    Edexcel C1 2010 January Q4
    7 marks Moderate -0.8
    4. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 5 x ^ { - \frac { 1 } { 2 } } + x \sqrt { } x , \quad x > 0$$ Given that \(y = 35\) at \(x = 4\), find \(y\) in terms of \(x\), giving each term in its simplest form.
    Edexcel C1 2012 January Q7
    5 marks Easy -1.2
    1. A curve with equation \(y = \mathrm { f } ( x )\) passes through the point \(( 2,10 )\). Given that
    $$f ^ { \prime } ( x ) = 3 x ^ { 2 } - 3 x + 5$$ find the value of \(\mathrm { f } ( 1 )\).
    Edexcel C1 2013 January Q8
    6 marks Moderate -0.8
    8. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = - x ^ { 3 } + \frac { 4 x - 5 } { 2 x ^ { 3 } } , \quad x \neq 0$$ Given that \(y = 7\) at \(x = 1\), find \(y\) in terms of \(x\), giving each term in its simplest form.
    OCR C2 2008 January Q5
    6 marks Easy -1.2
    5 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 12 \sqrt { x }\). The curve passes through the point (4,50). Find the equation of the curve.
    OCR MEI C2 2005 June Q7
    5 marks Easy -1.2
    7 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 6 } { x ^ { 3 } }\). The curve passes through \(( 1,4 )\).
    Find the equation of the curve.
    OCR MEI C2 2006 June Q5
    4 marks Easy -1.2
    5 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 - x ^ { 2 }\). The curve passes through the point \(( 6,1 )\). Find the equation of the curve.
    OCR MEI C2 Q7
    5 marks Moderate -0.8
    7 The gradient of a curve \(y = \mathrm { f } ( x )\) is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x ^ { 2 } - 10 x + 6\). The curve passes through the point \(( 2,3 )\) Find the equation of the curve.