| Exam Board | OCR |
| Module | C2 (Core Mathematics 2) |
| Topic | Standard Integrals and Reverse Chain Rule |
5. (i) Find
$$\int \left( 8 x - \frac { 2 } { x ^ { 3 } } \right) \mathrm { d } x$$
The gradient of a curve is given by
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = 8 x - \frac { 2 } { x ^ { 3 } } , \quad x \neq 0$$
and the curve passes through the point \(( 1,1 )\).
(ii) Show that the equation of the curve can be written in the form
$$y = \left( a x + \frac { b } { x } \right) ^ { 2 }$$
where \(a\) and \(b\) are integers to be found.