Show equation reduces to tan form

A question is this type if and only if it requires showing that a given trigonometric equation can be simplified to the form tan x = k or a quadratic in tan x, often by dividing through by cos terms.

21 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
CAIE P1 2016 November Q2
5 marks Moderate -0.8
2
  1. Express the equation \(\sin 2 x + 3 \cos 2 x = 3 ( \sin 2 x - \cos 2 x )\) in the form \(\tan 2 x = k\), where \(k\) is a constant.
  2. Hence solve the equation for \(- 90 ^ { \circ } \leqslant x \leqslant 90 ^ { \circ }\).
CAIE P3 2003 June Q1
4 marks Moderate -0.3
1
  1. Show that the equation $$\sin \left( x - 60 ^ { \circ } \right) - \cos \left( 30 ^ { \circ } - x \right) = 1$$ can be written in the form \(\cos x = k\), where \(k\) is a constant.
  2. Hence solve the equation, for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
CAIE P2 2002 November Q5
9 marks Standard +0.3
5 The angle \(x\), measured in degrees, satisfies the equation $$\cos \left( x - 30 ^ { \circ } \right) = 3 \sin \left( x - 60 ^ { \circ } \right)$$
  1. By expanding each side, show that the equation may be simplified to $$( 2 \sqrt { } 3 ) \cos x = \sin x$$
  2. Find the two possible values of \(x\) lying between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
  3. Find the exact value of \(\cos 2 x\), giving your answer as a fraction.
CAIE P2 2008 November Q4
6 marks Moderate -0.3
4
  1. Show that the equation $$\sin \left( x + 30 ^ { \circ } \right) = 2 \cos \left( x + 60 ^ { \circ } \right)$$ can be written in the form $$( 3 \sqrt { } 3 ) \sin x = \cos x$$
  2. Hence solve the equation $$\sin \left( x + 30 ^ { \circ } \right) = 2 \cos \left( x + 60 ^ { \circ } \right)$$ for \(- 180 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
CAIE P2 2009 November Q4
6 marks Moderate -0.3
4
  1. Show that the equation \(\sin \left( 60 ^ { \circ } - x \right) = 2 \sin x\) can be written in the form \(\tan x = k\), where \(k\) is a constant.
  2. Hence solve the equation \(\sin \left( 60 ^ { \circ } - x \right) = 2 \sin x\), for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
CAIE P3 2021 June Q3
6 marks Moderate -0.3
3
  1. Given that \(\cos \left( x - 30 ^ { \circ } \right) = 2 \sin \left( x + 30 ^ { \circ } \right)\), show that \(\tan x = \frac { 2 - \sqrt { 3 } } { 1 - 2 \sqrt { 3 } }\).
  2. Hence solve the equation $$\cos \left( x - 30 ^ { \circ } \right) = 2 \sin \left( x + 30 ^ { \circ } \right)$$ for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
CAIE P3 2023 June Q4
6 marks Moderate -0.3
4
  1. Show that the equation \(\sin 2 \theta + \cos 2 \theta = 2 \sin ^ { 2 } \theta\) can be expressed in the form $$\cos ^ { 2 } \theta + 2 \sin \theta \cos \theta - 3 \sin ^ { 2 } \theta = 0$$
  2. Hence solve the equation \(\sin 2 \theta + \cos 2 \theta = 2 \sin ^ { 2 } \theta\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
Edexcel P2 2021 June Q8
10 marks Standard +0.3
8. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
  1. Solve, for \(0 < \theta < 360 ^ { \circ }\), the equation $$3 \sin \left( \theta + 30 ^ { \circ } \right) = 7 \cos \left( \theta + 30 ^ { \circ } \right)$$ giving your answers to one decimal place.
  2. (a) Show that the equation $$3 \sin ^ { 3 } x = 5 \sin x - 7 \sin x \cos x$$ can be written in the form $$\sin x \left( a \cos ^ { 2 } x + b \cos x + c \right) = 0$$ where \(a , b\) and \(c\) are constants to be found.
    (b) Hence solve for \(- \frac { \pi } { 2 } \leqslant x \leqslant \frac { \pi } { 2 }\) the equation $$3 \sin ^ { 3 } x = 5 \sin x - 7 \sin x \cos x$$ \includegraphics[max width=\textwidth, alt={}, center]{515f245f-9c5b-4263-ab2c-0a4f96f3bff0-27_2644_1840_118_111}
Edexcel P3 2022 January Q2
5 marks Moderate -0.3
2. (a) Show that the equation $$8 \cos \theta = 3 \operatorname { cosec } \theta$$ can be written in the form $$\sin 2 \theta = k$$ where \(k\) is a constant to be found.
(b) Hence find the smallest positive solution of the equation $$8 \cos \theta = 3 \operatorname { cosec } \theta$$ giving your answer, in degrees, to one decimal place.
Edexcel P3 2024 January Q9
8 marks Standard +0.3
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Show that the equation $$\frac { 3 \sin \theta \cos \theta } { \cos \theta + \sin \theta } = ( 2 + \sec 2 \theta ) ( \cos \theta - \sin \theta )$$ can be written in the form $$3 \sin 2 \theta - 4 \cos 2 \theta = 2$$
  2. Hence solve for \(\pi < x < \frac { 3 \pi } { 2 }\) $$\frac { 3 \sin x \cos x } { \cos x + \sin x } = ( 2 + \sec 2 x ) ( \cos x - \sin x )$$ giving the answer to 3 significant figures.
Edexcel P3 2024 June Q7
8 marks Standard +0.8
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Given that $$\sqrt { 2 } \sin \left( x + 45 ^ { \circ } \right) = \cos \left( x - 60 ^ { \circ } \right)$$ show that $$\tan x = - 2 - \sqrt { 3 }$$
  2. Hence or otherwise, solve, for \(0 \leqslant \theta < 180 ^ { \circ }\) $$\sqrt { 2 } \sin ( 2 \theta ) = \cos \left( 2 \theta - 105 ^ { \circ } \right)$$
Edexcel P3 2021 October Q4
7 marks Standard +0.3
4. In this question you should show detailed reasoning. \section*{Solutions relying entirely on calculator technology are not acceptable.}
  1. Show that the equation $$2 \sin \left( \theta - 30 ^ { \circ } \right) = 5 \cos \theta$$ can be written in the form $$\tan \theta = 2 \sqrt { 3 }$$
  2. Hence, or otherwise, solve for \(0 \leqslant x \leqslant 360 ^ { \circ }\) $$2 \sin \left( x - 10 ^ { \circ } \right) = 5 \cos \left( x + 20 ^ { \circ } \right)$$ giving your answers to one decimal place.
Edexcel C34 2015 January Q7
9 marks Standard +0.8
7. (a) Given that $$2 \cos ( x + 30 ) ^ { \circ } = \sin ( x - 30 ) ^ { \circ }$$ without using a calculator, show that $$\tan x ^ { \circ } = 3 \sqrt { 3 } - 4$$ (b) Hence or otherwise solve, for \(0 \leqslant \theta < 180\), $$2 \cos ( 2 \theta + 40 ) ^ { \circ } = \sin ( 2 \theta - 20 ) ^ { \circ }$$ Give your answers to one decimal place.
Edexcel C3 2013 June Q3
8 marks Standard +0.3
3. Given that $$2 \cos ( x + 50 ) ^ { \circ } = \sin ( x + 40 ) ^ { \circ }$$
  1. Show, without using a calculator, that $$\tan x ^ { \circ } = \frac { 1 } { 3 } \tan 40 ^ { \circ }$$
  2. Hence solve, for \(0 \leqslant \theta < 360\), $$2 \cos ( 2 \theta + 50 ) ^ { \circ } = \sin ( 2 \theta + 40 ) ^ { \circ }$$ giving your answers to 1 decimal place.
OCR C3 Q5
9 marks Standard +0.8
  1. (i) Show that the equation
$$2 \sin x + \sec \left( x + \frac { \pi } { 6 } \right) = 0$$ can be written as $$\sqrt { 3 } \sin x \cos x + \cos ^ { 2 } x = 0$$ (ii) Hence, or otherwise, find in terms of \(\pi\) the solutions of the equation $$2 \sin x + \sec \left( x + \frac { \pi } { 6 } \right) = 0$$ for \(x\) in the interval \(0 \leq x \leq \pi\).
OCR MEI C4 2008 January Q4
7 marks Moderate -0.8
4 The angle \(\theta\) satisfies the equation \(\sin \left( \theta + 45 ^ { \circ } \right) = \cos \theta\).
  1. Using the exact values of \(\sin 45 ^ { \circ }\) and \(\cos 45 ^ { \circ }\), show that \(\tan \theta = \sqrt { 2 } - 1\).
  2. Find the values of \(\theta\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
OCR MEI C4 Q5
7 marks Standard +0.3
5 Given that \(\sin ( \theta + \alpha ) = 2 \sin \theta\), show that \(\tan \theta = \frac { \sin \alpha } { 2 - \cos \alpha }\). Hence solve the equation \(\sin \left( \theta + 40 ^ { \circ } \right) = 2 \sin \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Edexcel AEA 2017 June Q2
9 marks Challenging +1.8
2.(a)Show that the equation $$\tan x = \frac { \sqrt { 3 } } { 1 + 4 \cos x }$$ can be written in the form $$\sin 2 x = \sin \left( 60 ^ { \circ } - x \right)$$ (b)Solve,for \(0 < x < 180 ^ { \circ }\) $$\tan x = \frac { \sqrt { 3 } } { 1 + 4 \cos x }$$
OCR H240/03 2018 June Q6
8 marks Standard +0.3
6 It is given that the angle \(\theta\) satisfies the equation \(\sin \left( 2 \theta + \frac { 1 } { 4 } \pi \right) = 3 \cos \left( 2 \theta + \frac { 1 } { 4 } \pi \right)\).
  1. Show that \(\tan 2 \theta = \frac { 1 } { 2 }\).
  2. Hence find, in surd form, the exact value of \(\tan \theta\), given that \(\theta\) is an obtuse angle.
OCR H240/01 Q8
6 marks Standard +0.3
8
  1. Show that \(\frac { 2 \tan \theta } { 1 + \tan ^ { 2 } \theta } = \sin 2 \theta\).
  2. In this question you must show detailed reasoning. Solve \(\frac { 2 \tan \theta } { 1 + \tan ^ { 2 } \theta } = 3 \cos 2 \theta\) for \(0 \leq \theta \leq \pi\).
OCR Pure 1 2017 Specimen Q8
6 marks Standard +0.3
8
  1. Show that \(\frac { 2 \tan \theta } { 1 + \tan ^ { 2 } \theta } = \sin 2 \theta\).
  2. In this question you must show detailed reasoning. Solve \(\frac { 2 \tan \theta } { 1 + \tan ^ { 2 } \theta } = 3 \cos 2 \theta\) for \(0 \leq \theta \leq \pi\).