- (i) Show that the equation
$$2 \sin x + \sec \left( x + \frac { \pi } { 6 } \right) = 0$$
can be written as
$$\sqrt { 3 } \sin x \cos x + \cos ^ { 2 } x = 0$$
(ii) Hence, or otherwise, find in terms of \(\pi\) the solutions of the equation
$$2 \sin x + \sec \left( x + \frac { \pi } { 6 } \right) = 0$$
for \(x\) in the interval \(0 \leq x \leq \pi\).