Edexcel P3 2024 January — Question 9

Exam BoardEdexcel
ModuleP3 (Pure Mathematics 3)
Year2024
SessionJanuary
TopicAddition & Double Angle Formulae

  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Show that the equation $$\frac { 3 \sin \theta \cos \theta } { \cos \theta + \sin \theta } = ( 2 + \sec 2 \theta ) ( \cos \theta - \sin \theta )$$ can be written in the form $$3 \sin 2 \theta - 4 \cos 2 \theta = 2$$
  2. Hence solve for \(\pi < x < \frac { 3 \pi } { 2 }\) $$\frac { 3 \sin x \cos x } { \cos x + \sin x } = ( 2 + \sec 2 x ) ( \cos x - \sin x )$$ giving the answer to 3 significant figures.