CAIE P3 2023 June — Question 4

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2023
SessionJune
TopicAddition & Double Angle Formulae

4
  1. Show that the equation \(\sin 2 \theta + \cos 2 \theta = 2 \sin ^ { 2 } \theta\) can be expressed in the form $$\cos ^ { 2 } \theta + 2 \sin \theta \cos \theta - 3 \sin ^ { 2 } \theta = 0$$
  2. Hence solve the equation \(\sin 2 \theta + \cos 2 \theta = 2 \sin ^ { 2 } \theta\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).