A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q4
CAIE P3 2023 June — Question 4
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2023
Session
June
Topic
Addition & Double Angle Formulae
4
Show that the equation \(\sin 2 \theta + \cos 2 \theta = 2 \sin ^ { 2 } \theta\) can be expressed in the form $$\cos ^ { 2 } \theta + 2 \sin \theta \cos \theta - 3 \sin ^ { 2 } \theta = 0$$
Hence solve the equation \(\sin 2 \theta + \cos 2 \theta = 2 \sin ^ { 2 } \theta\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
4
Q6
Q7
Q8
Q9
Q10