AQA FP2 2012 January — Question 8

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2012
SessionJanuary
TopicComplex numbers 2

8
  1. Write down the five roots of the equation \(z ^ { 5 } = 1\), giving your answers in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\), where \(- \pi < \theta \leqslant \pi\).
  2. Hence find the four linear factors of $$z ^ { 4 } + z ^ { 3 } + z ^ { 2 } + z + 1$$
  3. Deduce that $$z ^ { 2 } + z + 1 + z ^ { - 1 } + z ^ { - 2 } = \left( z - 2 \cos \frac { 2 \pi } { 5 } + z ^ { - 1 } \right) \left( z - 2 \cos \frac { 4 \pi } { 5 } + z ^ { - 1 } \right)$$
  4. Use the substitution \(z + z ^ { - 1 } = w\) to show that \(\cos \frac { 2 \pi } { 5 } = \frac { \sqrt { 5 } - 1 } { 4 }\).