AQA Further Paper 1 2020 June — Question 6 2 marks

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
Year2020
SessionJune
Marks2
TopicComplex numbers 2

6 Let \(w\) be the root of the equation \(z ^ { 7 } = 1\) that has the smallest argument \(\alpha\) in the interval \(0 < \alpha < \pi\) 6
  1. Prove that \(w ^ { n }\) is also a root of the equation \(z ^ { 7 } = 1\) for any integer \(n\). 6
  2. Prove that \(1 + w + w ^ { 2 } + w ^ { 3 } + w ^ { 4 } + w ^ { 5 } + w ^ { 6 } = 0\)
    6
  3. Show the positions of \(w , w ^ { 2 } , w ^ { 3 } , w ^ { 4 } , w ^ { 5 }\), and \(w ^ { 6 }\) on the Argand diagram below.
    [0pt] [2 marks]
    \includegraphics[max width=\textwidth, alt={}, center]{44e22a98-6424-4fb1-8a37-c965773cb7b6-08_835_898_1802_571} 6
  4. Prove that $$\cos \frac { 2 \pi } { 7 } + \cos \frac { 4 \pi } { 7 } + \cos \frac { 6 \pi } { 7 } = - \frac { 1 } { 2 }$$