Direct nth roots of complex numbers

Questions that directly ask to solve z^n = w for a given complex number w, where w is provided in Cartesian, polar, or exponential form, requiring straightforward application of De Moivre's theorem to find all n distinct roots.

40 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2020 June Q3
8 marks Standard +0.8
3
  1. Find the roots of the equation \(z ^ { 3 } = - 1 - \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
    Let \(\mathbf { w } = \mathbf { z } _ { 1 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 2 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 3 } ^ { 3 \mathrm { k } }\), where \(k\) is a positive integer and \(\mathrm { z } _ { 1 } , \mathrm { z } _ { 2 } , \mathrm { z } _ { 3 }\) are the roots of \(\mathrm { z } ^ { 3 } = - 1 - \mathrm { i }\).
  2. Express \(w\) in the form \(R \mathrm { e } ^ { \mathrm { i } \alpha }\), where \(R > 0\), giving \(R\) and \(\alpha\) in terms of \(k\).
    \includegraphics[max width=\textwidth, alt={}, center]{20e14db3-0eb0-4954-91cf-027e16f8bf14-06_889_824_267_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
CAIE Further Paper 2 2020 June Q3
8 marks
3
  1. Find the roots of the equation \(z ^ { 3 } = - 1 - \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
    Let \(\mathbf { w } = \mathbf { z } _ { 1 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 2 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 3 } ^ { 3 \mathrm { k } }\), where \(k\) is a positive integer and \(\mathrm { z } _ { 1 } , \mathrm { z } _ { 2 } , \mathrm { z } _ { 3 }\) are the roots of \(\mathrm { z } ^ { 3 } = - 1 - \mathrm { i }\).
  2. Express \(w\) in the form \(R \mathrm { e } ^ { \mathrm { i } \alpha }\), where \(R > 0\), giving \(R\) and \(\alpha\) in terms of \(k\).
    \includegraphics[max width=\textwidth, alt={}, center]{1de67949-6262-4ade-b986-02b6563ae404-06_889_824_267_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
CAIE Further Paper 2 2022 June Q1
5 marks Standard +0.3
1 Find the roots of the equation \(z ^ { 3 } = 7 \sqrt { 3 } - 7 \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi \leqslant \theta < \pi\).
CAIE Further Paper 2 2024 June Q1
5 marks Standard +0.3
1 Find the roots of the equation \(z ^ { 3 } = - 108 \sqrt { 3 } + 108\) i, giving your answers in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(r > 0\) and \(0 < \theta < 2 \pi\).
CAIE Further Paper 2 2023 November Q2
5 marks Standard +0.8
2 Find the roots of the equation \(( z + 5 i ) ^ { 3 } = 4 + 4 \sqrt { 3 } i\), giving your answers in the form \(r \cos \theta + i ( r \sin \theta - 5 )\), where \(r > 0\) and \(0 < \theta < 2 \pi\).
Edexcel F2 2022 January Q1
7 marks Standard +0.3
  1. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
    1. Express the complex number
    $$- 4 - 4 \sqrt { 3 } i$$ in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\)
  2. Solve the equation $$z ^ { 3 } + 4 + 4 \sqrt { 3 } i = 0$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\)
Edexcel F2 2014 June Q3
5 marks Standard +0.3
3. Solve the equation $$z ^ { 5 } = 16 - 16 \mathrm { i } \sqrt { 3 }$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(\theta\) is in terms of \(\pi\) and \(0 \leqslant \theta < 2 \pi\).
Edexcel F2 2017 June Q1
5 marks Moderate -0.8
  1. Solve the equation
$$z ^ { 5 } = 32$$ Give your answers in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\)
Edexcel F2 2020 June Q4
8 marks Standard +0.3
4. (a) Express the complex number \(18 \sqrt { 3 } - 18 \mathrm { i }\) in the form $$r ( \cos \theta + \mathrm { i } \sin \theta ) \quad - \pi < \theta \leqslant \pi$$ (b) Solve the equation $$z ^ { 4 } = 18 \sqrt { 3 } - 18 i$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(- \pi < \theta \leqslant \pi\)
VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
Edexcel FP2 2006 January Q5
5 marks Standard +0.3
5. Solve the equation \(z ^ { 5 } = \mathrm { i }\)
giving your answers in the form \(\cos \theta + \mathrm { i } \sin \theta\).
(Total 5 marks)
Edexcel FP2 2012 June Q3
8 marks Standard +0.3
3. (a) Express the complex number \(- 2 + ( 2 \sqrt { 3 } ) \mathrm { i }\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta ) , - \pi < \theta \leqslant \pi\).
(b) Solve the equation $$z ^ { 4 } = - 2 + ( 2 \sqrt { } 3 ) i$$ giving the roots in the form \(r ( \cos \theta + \mathrm { i } \sin \theta ) , - \pi < \theta \leqslant \pi\).
Edexcel FP2 2013 June Q6
8 marks Standard +0.3
6. Solve the equation $$z ^ { 5 } = - 16 \sqrt { } 3 + 16 i$$ giving your answers in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(r > 0\) and \(- \pi < \theta < \pi\).
Edexcel FP2 2016 June Q3
7 marks Standard +0.3
3. (a) Find the four roots of the equation \(z ^ { 4 } = 8 ( \sqrt { 3 } + \mathrm { i } )\) in the form \(z = r \mathrm { e } ^ { \mathrm { i } \theta }\)
(b) Show these roots on an Argand diagram.
Edexcel FP2 2017 June Q3
6 marks Standard +0.3
3. Solve the equation $$z ^ { 3 } + 32 + 32 i \sqrt { 3 } = 0$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(r > 0\) and \(- \pi < \theta \leqslant \pi\)
Edexcel FP2 2018 June Q3
9 marks Standard +0.3
3. (a) By writing \(\frac { \pi } { 12 } = \frac { \pi } { 3 } - \frac { \pi } { 4 }\), show that
  1. \(\sin \left( \frac { \pi } { 12 } \right) = \frac { 1 } { 4 } ( \sqrt { 6 } - \sqrt { 2 } )\)
  2. \(\cos \left( \frac { \pi } { 12 } \right) = \frac { 1 } { 4 } ( \sqrt { 6 } + \sqrt { 2 } )\)
    (b) Hence find the exact values of \(z\) for which $$z ^ { 4 } = 4 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right)$$ Give your answers in the form \(z = a + i b\) where \(a , b \in \mathbb { R }\)
Edexcel F2 2021 October Q1
4 marks Standard +0.3
  1. Solve the equation
$$z ^ { 5 } - 32 i = 0$$ giving each answer in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(0 < \theta < 2 \pi\)
Edexcel FP2 2009 June Q2
6 marks Standard +0.8
Solve the equation $$z ^ { 3 } = 4 \sqrt { } 2 - 4 \sqrt { } 2 i$$ giving your answers in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(- \pi < \theta \leqslant \pi\).
OCR FP3 Specimen Q4
9 marks Standard +0.3
4 In this question, give your answers exactly in polar form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  1. Express \(4 ( ( \sqrt { } 3 ) - \mathrm { i } )\) in polar form.
  2. Find the cube roots of \(4 ( ( \sqrt { } 3 ) - \mathrm { i } )\) in polar form.
  3. Sketch an Argand diagram showing the positions of the cube roots found in part (ii). Hence, or otherwise, prove that the sum of these cube roots is zero.
OCR FP3 2012 June Q2
8 marks Standard +0.3
2
  1. Solve the equation \(z ^ { 4 } = 2 ( 1 + \mathrm { i } \sqrt { 3 } )\), giving the roots exactly in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
  2. Sketch an Argand diagram to show the lines from the origin to the point representing \(2 ( 1 + i \sqrt { 3 } )\) and from the origin to the points which represent the roots of the equation in part (i).
OCR FP3 2014 June Q3
10 marks Standard +0.3
3
  1. Solve the equation \(z ^ { 6 } = 1\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), and sketch an Argand diagram showing the positions of the roots.
  2. Show that \(( 1 + \mathrm { i } ) ^ { 6 } = - 8 \mathrm { i }\).
  3. Hence, or otherwise, solve the equation \(z ^ { 6 } + 8 \mathrm { i } = 0\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\).
OCR FP3 2009 June Q1
4 marks Standard +0.3
1 Find the cube roots of \(\frac { 1 } { 2 } \sqrt { 3 } + \frac { 1 } { 2 } \mathrm { i }\), giving your answers in the form \(\cos \theta + \mathrm { i } \sin \theta\), where \(0 \leqslant \theta < 2 \pi\).
OCR FP3 2016 June Q1
6 marks Standard +0.3
1 In this question, give all non-real numbers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(r > 0\) and \(0 < \theta < 2 \pi\).
  1. Solve \(z ^ { 5 } = 1\).
  2. Hence, or otherwise, solve \(z ^ { 5 } + 32 = 0\). Sketch an Argand diagram showing the roots.
AQA Further Paper 2 Specimen Q4
4 marks Moderate -0.3
4 Solve the equation \(z ^ { 3 } = i\), giving your answers in the form \(e ^ { i \theta }\), where \(- \pi < \theta \leq \pi\)
[0pt] [4 marks]
OCR Further Pure Core 1 2023 June Q3
5 marks Standard +0.3
3
  1. Show that \(\frac { - 3 + \sqrt { 3 } \mathrm { i } } { 2 } = \sqrt { 3 } \mathrm { e } ^ { \frac { 5 } { 6 } \pi \mathrm { i } }\).
  2. Hence determine the exact roots of the equation \(z ^ { 5 } = \frac { 9 ( - 3 + \sqrt { 3 } \mathrm { i } ) } { 2 }\), giving the roots in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
OCR Further Pure Core 1 2020 November Q4
4 marks Moderate -0.3
4 In this question you must show detailed reasoning.
  1. Determine the square roots of 25 i in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(0 \leqslant \theta < 2 \pi\).
  2. Illustrate the number 25i and its square roots on an Argand diagram.