Direct nth roots of complex numbers

Questions that directly ask to solve z^n = w for a given complex number w, where w is provided in Cartesian, polar, or exponential form, requiring straightforward application of De Moivre's theorem to find all n distinct roots.

40 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
AQA FP2 2011 January Q8
17 marks Challenging +1.2
8
  1. Express in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\) :
    1. \(\quad 4 ( 1 + i \sqrt { 3 } )\);
    2. \(4 ( 1 - i \sqrt { 3 } )\).
  2. The complex number \(z\) satisfies the equation $$\left( z ^ { 3 } - 4 \right) ^ { 2 } = - 48$$ Show that \(z ^ { 3 } = 4 \pm 4 \sqrt { 3 } \mathrm { i }\).
    1. Solve the equation $$\left( z ^ { 3 } - 4 \right) ^ { 2 } = - 48$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    2. Illustrate the roots on an Argand diagram.
    1. Explain why the sum of the roots of the equation $$\left( z ^ { 3 } - 4 \right) ^ { 2 } = - 48$$ is zero.
    2. Deduce that \(\cos \frac { \pi } { 9 } + \cos \frac { 3 \pi } { 9 } + \cos \frac { 5 \pi } { 9 } + \cos \frac { 7 \pi } { 9 } = \frac { 1 } { 2 }\).
AQA FP2 2013 January Q8
14 marks Challenging +1.2
8
  1. Express \(- 4 + 4 \sqrt { 3 } \mathrm { i }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    1. Solve the equation \(z ^ { 3 } = - 4 + 4 \sqrt { 3 } \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    2. The roots of the equation \(z ^ { 3 } = - 4 + 4 \sqrt { 3 } \mathrm { i }\) are represented by the points \(P , Q\) and \(R\) on an Argand diagram. Find the area of the triangle \(P Q R\), giving your answer in the form \(k \sqrt { 3 }\), where \(k\) is an integer.
  2. By considering the roots of the equation \(z ^ { 3 } = - 4 + 4 \sqrt { 3 } \mathrm { i }\), show that $$\cos \frac { 2 \pi } { 9 } + \cos \frac { 4 \pi } { 9 } + \cos \frac { 8 \pi } { 9 } = 0$$
AQA FP2 2014 June Q1
7 marks Standard +0.3
1
  1. Express - 9 i in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    [0pt] [2 marks]
  2. Solve the equation \(z ^ { 4 } + 9 \mathrm { i } = 0\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    [0pt] [5 marks]
AQA FP2 2016 June Q5
12 marks Standard +0.3
5
  1. Find the modulus of the complex number \(- 4 \sqrt { 3 } + 4 \mathrm { i }\), giving your answer as an integer.
  2. The locus of points, \(L\), satisfies the equation \(| z + 4 \sqrt { 3 } - 4 \mathrm { i } | = 4\).
    1. Sketch the locus \(L\) on the Argand diagram below.
    2. The complex number \(w\) lies on \(L\) so that \(- \pi < \arg w \leqslant \pi\). Find the least possible value of arg \(w\), giving your answer in terms of \(\pi\).
  3. Solve the equation \(z ^ { 3 } = - 4 \sqrt { 3 } + 4 \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    [0pt] [5 marks]
OCR MEI Further Pure Core 2022 June Q11
8 marks Standard +0.3
11 An Argand diagram with the point A representing a complex number \(z _ { 1 }\) is shown below.
\includegraphics[max width=\textwidth, alt={}, center]{b57a2590-84e8-4998-9633-902db861f23a-4_716_778_932_239} The complex numbers \(z _ { 2 }\) and \(z _ { 3 }\) are \(z _ { 1 } \mathrm { e } ^ { \frac { 2 } { 3 } \mathrm { i } \pi }\) and \(z _ { 1 } \mathrm { e } ^ { \frac { 4 } { 3 } \mathrm { i } \pi }\) respectively.
    1. On the copy of the Argand diagram in the Printed Answer Booklet, mark the points B and C representing the complex numbers \(z _ { 2 }\) and \(z _ { 3 }\).
    2. Show that \(z _ { 1 } + z _ { 2 } + z _ { 3 } = 0\).
  1. Given now that \(z _ { 1 } , z _ { 2 }\) and \(z _ { 3 }\) are roots of the equation \(z ^ { 3 } = 8 \mathrm { i }\), find these three roots, giving your answers in the form \(\mathrm { a } + \mathrm { ib }\), where \(a\) and \(b\) are real and exact.
OCR MEI Further Pure Core 2023 June Q5
7 marks Moderate -0.3
5
  1. In this question you must show detailed reasoning.
    Determine the sixth roots of - 64 , expressed in \(r \mathrm { e } ^ { \mathrm { i } \theta }\) form.
  2. Represent the roots on an Argand diagram.
OCR MEI Further Pure Core 2021 November Q10
13 marks
10
  1. Show on an Argand diagram the points representing the three cube roots of unity.
    1. Find the exact roots of the equation \(z ^ { 3 } - 1 = \sqrt { 3 } \mathrm { i }\), expressing them in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta < \pi\).
    2. The points representing the cube roots of unity form a triangle \(\Delta _ { 1 }\). The points representing the roots of the equation \(z ^ { 3 } - 1 = \sqrt { 3 } \mathrm { i }\) form a triangle \(\Delta _ { 2 }\). State a sequence of two transformations that maps \(\Delta _ { 1 }\) onto \(\Delta _ { 2 }\).
    3. The three roots in part (b)(i) are \(z _ { 1 } , z _ { 2 }\) and \(z _ { 3 }\). By simplifying \(z _ { 1 } + z _ { 2 } + z _ { 3 }\), verify that the sum of these roots is zero.
    4. Hence show that \(\sin 20 ^ { \circ } + \sin 140 ^ { \circ } = \sin 100 ^ { \circ }\).
WJEC Further Unit 4 2019 June Q1
8 marks Standard +0.3
  1. A complex number is defined by \(z = 3 + 4 \mathrm { i }\).
    1. Express \(z\) in the form \(z = r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(- \pi \leqslant \theta \leqslant \pi\).
      1. Find the Cartesian coordinates of the vertices of the triangle formed by the cube roots of \(z\) when plotted in an Argand diagram. Give your answers correct to two decimal places.
      2. Write down the geometrical name of the triangle.
    2. (a) Show that \(3 \sin x + 4 \cos x - 2\) can be written as \(\frac { 6 t + 2 - 6 t ^ { 2 } } { 1 + t ^ { 2 } }\), where \(t = \tan \left( \frac { x } { 2 } \right)\).
    3. Hence, find the general solution of the equation \(3 \sin x + 4 \cos x - 2 = 3\).
    4. (a) Determine whether or not the following set of equations
    $$\left( \begin{array} { r r r } 2 & - 7 & 2 \\ 0 & 3 & - 2 \\ - 7 & 8 & 4 \end{array} \right) \left( \begin{array} { l } x \\ y \\ z \end{array} \right) = \left( \begin{array} { l } a \\ b \\ c \end{array} \right)$$ has a unique solution, where \(a , b , c\) are constants.
  2. Solve the set of equations $$\begin{aligned} x + 8 y - 6 z & = 5 \\ 2 x + 4 y + 6 z & = - 3 \\ - 5 x - 4 y + 9 z & = - 7 \end{aligned}$$ Show all your working.
WJEC Further Unit 4 2023 June Q7
7 marks Standard +0.8
7. Find the cube roots of the complex number \(z = 11 - 2 \mathrm { i }\), giving your answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real and correct to three decimal places.
WJEC Further Unit 4 2024 June Q1
11 marks Challenging +1.2
  1. (a) Express the three cube roots of \(5 + 10 \mathrm { i }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(0 \leqslant \theta < 2 \pi\).
    …………………………………………………………………………………………………………………………………………………..
    (b) The three cube roots of \(5 + 10 \mathrm { i }\) are plotted in an Argand diagram. The points are joined by straight lines to form a triangle. Find the area of this triangle, giving your answer correct to two significant figures.
  2. The function \(f\) is defined by \(f ( x ) = \cosh \left( \frac { x } { 2 } \right)\).
    (a) State the Maclaurin series expansion for \(\cosh \left( \frac { x } { 2 } \right)\) up to and including the term in \(x ^ { 4 }\).
Another function \(g\) is defined by \(g ( x ) = x ^ { 2 } - 2\). The diagram below shows parts of the graphs of \(y = f ( x )\) and \(y = g ( x )\).
\includegraphics[max width=\textwidth, alt={}, center]{7316672a-ae33-4f5b-9c59-51ef43af8ff1-04_894_940_1471_552}
(b) The two graphs intersect at the point \(A\), as shown in the diagram. Use your answer from part (a) to find an approximation for the \(x\)-coordinate of \(A\), giving your answer correct to two decimal places.
(c) Using your answer to part (b), find an approximation for the area of the shaded region enclosed by the two graphs, the \(x\)-axis and the \(y\)-axis.
\section*{PLEASE DO NOT WRITE ON THIS PAGE}
OCR MEI Further Pure Core 2020 November Q10
7 marks Standard +0.3
  1. Write down, in exponential ( \(r \mathrm { e } ^ { \mathrm { i } \theta }\) ) form, the complex numbers represented by the points \(\mathrm { A } , \mathrm { B }\), \(\mathrm { C } , \mathrm { D } , \mathrm { E }\) and F .
  2. When these complex numbers are multiplied by the complex number \(w\), the resulting complex numbers are represented by the points G, H, I, J, K and L. Find \(w\) in exponential form.
  3. You are given that \(\mathrm { G } , \mathrm { H } , \mathrm { I } , \mathrm { J } , \mathrm { K }\) and L represent roots of the equation \(z ^ { 6 } = p\). Find \(p\).
OCR Further Pure Core 2 2020 November Q8
9 marks Standard +0.8
8 In this question you must show detailed reasoning. The complex number \(- 4 + i \sqrt { 48 }\) is denoted by \(z\).
  1. Determine the cube roots of \(z\), giving the roots in exponential form. The points which represent the cube roots of \(z\) are denoted by \(A , B\) and \(C\) and these form a triangle in an Argand diagram.
  2. Write down the angles that any lines of symmetry of triangle \(A B C\) make with the positive real axis, justifying your answer.
AQA FP2 2008 January Q1
8 marks Standard +0.3
1
  1. Express \(4 + 4 \mathrm { i }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  2. Solve the equation $$z ^ { 5 } = 4 + 4 i$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
AQA FP2 2009 June Q1
8 marks Standard +0.8
1 Given that \(z = 2 \mathrm { e } ^ { \frac { \pi \mathrm { i } } { 12 } }\) satisfies the equation $$z ^ { 4 } = a ( 1 + \sqrt { 3 } i )$$ where \(a\) is real:
  1. find the value of \(a\);
  2. find the other three roots of this equation, giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
AQA Further Paper 1 2019 June Q9
9 marks Challenging +1.2
9
  1. Solve the equation \(z ^ { 3 } = \sqrt { 2 } - \sqrt { 6 } \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(r > 0\) and \(0 \leq \theta < 2 \pi\) 9
  2. The transformation represented by the matrix \(\mathbf { M } = \left[ \begin{array} { l l } 5 & 1 \\ 1 & 3 \end{array} \right]\) acts on the points on an Argand Diagram which represent the roots of the equation in part (a). Find the exact area of the shape formed by joining the transformed points.