OCR FP3 2014 June — Question 3

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2014
SessionJune
TopicComplex numbers 2

3
  1. Solve the equation \(z ^ { 6 } = 1\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), and sketch an Argand diagram showing the positions of the roots.
  2. Show that \(( 1 + \mathrm { i } ) ^ { 6 } = - 8 \mathrm { i }\).
  3. Hence, or otherwise, solve the equation \(z ^ { 6 } + 8 \mathrm { i } = 0\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\).