OCR FP3 2012 June — Question 2

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2012
SessionJune
TopicComplex numbers 2

2
  1. Solve the equation \(z ^ { 4 } = 2 ( 1 + \mathrm { i } \sqrt { 3 } )\), giving the roots exactly in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
  2. Sketch an Argand diagram to show the lines from the origin to the point representing \(2 ( 1 + i \sqrt { 3 } )\) and from the origin to the points which represent the roots of the equation in part (i).