Integration by parts with inverse trig

A question is this type if and only if it requires integration by parts where one factor is an inverse trigonometric or inverse hyperbolic function.

13 questions · Challenging +1.1

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2016 June Q5
7 marks Challenging +1.8
5. Given that \(y = \operatorname { artanh } ( \cos x )\)
  1. show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = - \operatorname { cosec } x$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 6 } } \cos x \operatorname { artanh } ( \cos x ) d x$$ giving your answer in the form \(a \ln ( b + c \sqrt { 3 } ) + d \pi\), where \(a , b , c\) and \(d\) are rational numbers to be found.
    (5)
Edexcel F3 2021 October Q8
13 marks Challenging +1.2
8. $$y = \arccos ( 2 \sqrt { x } )$$
  1. Determine \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. Show that $$\int y \mathrm {~d} x = x \arccos ( 2 \sqrt { x } ) + \int \frac { \sqrt { x } } { \sqrt { 1 - 4 x } } \mathrm {~d} x$$
  3. Use the substitution \(\sqrt { x } = \frac { 1 } { 2 } \cos \theta\) to show that $$\int _ { 0 } ^ { \frac { 1 } { 8 } } \frac { \sqrt { x } } { \sqrt { 1 - 4 x } } \mathrm {~d} x = \frac { 1 } { 4 } \int _ { a } ^ { b } \cos ^ { 2 } \theta \mathrm {~d} \theta$$ where \(a\) and \(b\) are limits to be determined.
  4. Hence, determine the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 8 } } \arccos ( 2 \sqrt { x } ) d x$$
Edexcel F3 2018 Specimen Q5
7 marks Challenging +1.8
  1. Given that \(y = \operatorname { artanh } ( \cos x )\)
    1. show that
    $$\frac { \mathrm { d } y } { \mathrm {~d} x } = - \operatorname { cosec } x$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 6 } } \cos x \operatorname { artanh } ( \cos x ) d x$$ giving your answer in the form \(a \ln ( b + c \sqrt { 3 } ) + d \pi\), where \(a , b , c\) and \(d\) are rational numbers to be found.
    VIIIV SIHI NI IIIYM ION OCVIIV SIHI NI JIIIM ION OCVEXV SIHIL NI JIIIM ION OO
Edexcel FP3 2009 June Q4
9 marks Challenging +1.3
  1. Given that \(y = \operatorname { arsinh } ( \sqrt { } x ) , x > 0\),
    1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving your answer as a simplified fraction.
    2. Hence, or otherwise, find
    $$\int _ { \frac { 1 } { 4 } } ^ { 4 } \frac { 1 } { \sqrt { [ x ( x + 1 ) ] } } \mathrm { d } x$$ giving your answer in the form \(\ln \left( \frac { a + b \sqrt { } 5 } { 2 } \right)\), where \(a\) and \(b\) are integers.
OCR FP2 2007 June Q4
7 marks Standard +0.8
4
  1. Given that $$y = x \sqrt { 1 - x ^ { 2 } } - \cos ^ { - 1 } x$$ find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in a simplified form.
  2. Hence, or otherwise, find the exact value of \(\int _ { 0 } ^ { 1 } 2 \sqrt { 1 - x ^ { 2 } } \mathrm {~d} x\).
CAIE P3 2020 Specimen Q5
7 marks Standard +0.8
5
  1. Sb that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( x - \tan ^ { - 1 } x \right) = \frac { x ^ { 2 } } { 1 + x ^ { 2 } }\).
  2. Sth the \(\int _ { 0 } ^ { \sqrt { 3 } } x \tan ^ { - 1 } x \mathrm {~d} x = \frac { 2 } { 3 } \pi - \frac { 1 } { 2 } \sqrt { 3 }\).
OCR Further Pure Core 1 2019 June Q6
6 marks Challenging +1.2
6 You are given that \(y = \tan ^ { - 1 } \sqrt { 2 x }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that \(\int _ { \frac { 1 } { 6 } } ^ { \frac { 1 } { 2 } } \frac { \sqrt { x } } { \left( x + 2 x ^ { 2 } \right) } \mathrm { d } x = k \pi\) where \(k\) is a number to be determined in exact form.
AQA FP2 2016 June Q4
6 marks Challenging +1.2
4
  1. Given that \(y = \tan ^ { - 1 } \sqrt { ( 3 x ) }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving your answer in terms of \(x\).
  2. Hence, or otherwise, show that \(\int _ { \frac { 1 } { 3 } } ^ { 1 } \frac { 1 } { ( 1 + 3 x ) \sqrt { x } } \mathrm {~d} x = \frac { \sqrt { 3 } \pi } { n }\), where \(n\) is an integer.
    [0pt] [4 marks]
Edexcel CP2 2020 June Q5
10 marks Standard +0.8
  1. (a)
$$y = \tan ^ { - 1 } x$$ Assuming the derivative of \(\tan x\), prove that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 1 + x ^ { 2 } }$$ $$\mathrm { f } ( x ) = x \tan ^ { - 1 } 4 x$$ (b) Show that $$\int \mathrm { f } ( x ) \mathrm { d } x = A x ^ { 2 } \tan ^ { - 1 } 4 x + B x + C \tan ^ { - 1 } 4 x + k$$ where \(k\) is an arbitrary constant and \(A , B\) and \(C\) are constants to be determined.
(c) Hence find, in exact form, the mean value of \(\mathrm { f } ( x )\) over the interval \(\left[ 0 , \frac { \sqrt { 3 } } { 4 } \right]\)
Edexcel FP3 Q4
8 marks Challenging +1.2
4. Given that \(y = \operatorname { arsinh } ( \sqrt { } x ) , x > 0\),
  1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving your answer as a simplified fraction.
  2. Hence, or otherwise, find $$\int _ { \frac { 1 } { 4 } } ^ { 4 } \frac { 1 } { \sqrt { [ x ( x + 1 ) ] } } \mathrm { d } x$$ giving your answer in the form \(\ln \left( \frac { a + b \sqrt { } 5 } { 2 } \right)\), where \(a\) and \(b\) are integers.
Edexcel FP3 Q5
10 marks Challenging +1.2
5. (a) Given that \(y = \arctan 3 x\), and assuming the derivative of \(\tan x\), prove that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 } { 1 + 9 x ^ { 2 } }$$ (b) Show that $$\int _ { 0 } ^ { \frac { \sqrt { 3 } } { 3 } } 6 x \arctan 3 x \mathrm {~d} x = \frac { 1 } { 9 } ( 4 \pi - 3 \sqrt { } 3 )$$ (6)
[0pt] [P5 June 2002 Qn 6] \section*{6.} \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{6706ed7f-4575-4898-b757-aee8475b2a30-04_815_431_351_913}
\end{figure} The curve \(C\) shown in Fig. 1 has equation \(y ^ { 2 } = 4 x , 0 \leq x \leq 1\).
The part of the curve in the first quadrant is rotated through \(2 \pi\) radians about the \(x\)-axis.
(a) Show that the surface area of the solid generated is given by $$4 \pi \int _ { 0 } ^ { 1 } \sqrt { ( 1 + x ) } d x$$ (b) Find the exact value of this surface area.
(c) Show also that the length of the curve \(C\), between the points \(( 1 , - 2 )\) and \(( 1,2 )\), is given by $$2 \int _ { 0 } ^ { 1 } \sqrt { \left( \frac { x + 1 } { x } \right) } \mathrm { d } x$$ (d) Use the substitution \(x = \sinh ^ { 2 } \theta\) to show that the exact value of this length is $$2 [ \sqrt { } 2 + \ln ( 1 + \sqrt { } 2 ) ]$$ [P5 June 2002 Qn 8]
AQA Further Paper 1 2024 June Q11
5 marks Standard +0.3
11
  1. Find \(\frac { \mathrm { d } } { \mathrm { d } x } \left( x ^ { 2 } \tan ^ { - 1 } x \right)\) 11
  2. Hence find \(\int 2 x \tan ^ { - 1 } x \mathrm {~d} x\)
OCR Further Pure Core 1 2021 June Q4
6 marks Challenging +1.2
4 You are given that \(y = \tan ^ { - 1 } \sqrt { 2 x }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that \(\int _ { \frac { 1 } { 6 } } ^ { \frac { 1 } { 2 } } \frac { \sqrt { x } } { \left( x + 2 x ^ { 2 } \right) } \mathrm { d } x = k \pi\) where \(k\) is a number to be determined in exact form.