- (a)
$$y = \tan ^ { - 1 } x$$
Assuming the derivative of \(\tan x\), prove that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 1 + x ^ { 2 } }$$
$$\mathrm { f } ( x ) = x \tan ^ { - 1 } 4 x$$
(b) Show that
$$\int \mathrm { f } ( x ) \mathrm { d } x = A x ^ { 2 } \tan ^ { - 1 } 4 x + B x + C \tan ^ { - 1 } 4 x + k$$
where \(k\) is an arbitrary constant and \(A , B\) and \(C\) are constants to be determined.
(c) Hence find, in exact form, the mean value of \(\mathrm { f } ( x )\) over the interval \(\left[ 0 , \frac { \sqrt { 3 } } { 4 } \right]\)