Sum of powers of roots

A question is this type if and only if it asks to find the value of expressions like α^n + β^n + γ^n using relationships between roots and coefficients.

15 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2021 June Q2
11 marks Challenging +1.2
2 The cubic equation \(2 x ^ { 3 } - 4 x ^ { 2 } + 3 = 0\) has roots \(\alpha , \beta , \gamma\). Let \(\mathrm { S } _ { \mathrm { n } } = \alpha ^ { \mathrm { n } } + \beta ^ { \mathrm { n } } + \gamma ^ { \mathrm { n } }\).
  1. State the value of \(S _ { 1 }\) and find the value of \(S _ { 2 }\).
    1. Express \(\mathrm { S } _ { \mathrm { n } + 3 }\) in terms of \(\mathrm { S } _ { \mathrm { n } + 2 }\) and \(\mathrm { S } _ { \mathrm { n } }\).
    2. Hence, or otherwise, find the value of \(S _ { 4 }\).
  2. Use the substitution \(\mathrm { y } = \mathrm { S } _ { 1 } - \mathrm { x }\), where \(S _ { 1 }\) is the numerical value found in part (a), to find and simplify an equation whose roots are \(\alpha + \beta , \beta + \gamma , \gamma + \alpha\).
  3. Find the value of \(\frac { 1 } { \alpha + \beta } + \frac { 1 } { \beta + \gamma } + \frac { 1 } { \gamma + \alpha }\).
CAIE Further Paper 1 2022 June Q2
7 marks Standard +0.3
2 The cubic equation \(x ^ { 3 } + 5 x ^ { 2 } + 10 x - 2 = 0\) has roots \(\alpha , \beta , \gamma\).
  1. Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_58_1550_397_347}
    \includegraphics[max width=\textwidth, alt={}, center]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_67_1566_481_328}
    \includegraphics[max width=\textwidth, alt={}, center]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_65_1566_573_328}
    \includegraphics[max width=\textwidth, alt={}, center]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_65_1570_662_324}
    \includegraphics[max width=\textwidth, alt={}, center]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_65_1570_751_324}
    \includegraphics[max width=\textwidth, alt={}, center]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_67_1570_840_324}
    \includegraphics[max width=\textwidth, alt={}, center]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_68_1570_931_324}
    \includegraphics[max width=\textwidth, alt={}]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_63_1570_1023_324} .......................................................................................................................................... . .......................................................................................................................................... ......................................................................................................................................... .
    \includegraphics[max width=\textwidth, alt={}]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_72_1570_1379_324} ........................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_80_1570_1556_324} .........................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_72_1572_1740_322} ....................................................................................................................................... .
    \includegraphics[max width=\textwidth, alt={}, center]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_74_1572_1921_322}
    \includegraphics[max width=\textwidth, alt={}, center]{e34e64b7-d3bb-4614-bf37-5ef90ad56157-04_70_1570_2012_324}
  2. Show that the matrix \(\left( \begin{array} { c c c } 1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1 \end{array} \right)\) is singular.
CAIE Further Paper 1 2023 June Q2
8 marks Challenging +1.2
2 \times 3 ^ { n } & 0
3 ^ { n } - 1 & 2 \end{array} \right)$$ (b) Find, in terms of \(n\), the inverse of \(\mathbf { A } ^ { n }\).\\ 2 The cubic equation \(x ^ { 3 } + 4 x ^ { 2 } + 6 x + 1 = 0\) has roots \(\alpha , \beta , \gamma\).\\ (a) Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\).\\ (b) Use standard results from the list of formulae (MF19) to show that $$\sum _ { r = 1 } ^ { n } \left( ( \alpha + r ) ^ { 2 } + ( \beta + r ) ^ { 2 } + ( \gamma + r ) ^ { 2 } \right) = n \left( n ^ { 2 } + a n + b \right)$$ where \(a\) and \(b\) are constants to be determined.
CAIE Further Paper 1 2021 November Q4
10 marks Challenging +1.2
4 The cubic equation \(x ^ { 3 } + 2 x ^ { 2 } + 3 x + 3 = 0\) has roots \(\alpha , \beta , \gamma\).
  1. Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\).
  2. Show that \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = 1\).
  3. Use standard results from the list of formulae (MF19) to show that $$\sum _ { r = 1 } ^ { n } \left( ( \alpha + r ) ^ { 3 } + ( \beta + r ) ^ { 3 } + ( \gamma + r ) ^ { 3 } \right) = n + \frac { 1 } { 4 } n ( n + 1 ) \left( a n ^ { 2 } + b n + c \right)$$ where \(a\), \(b\) and \(c\) are constants to be determined.
CAIE Further Paper 1 2020 Specimen Q4
9 marks Standard +0.8
4 Th cb c ę tin $$z ^ { 3 } - z ^ { 2 } - z - 5 = 0$$ h s ro \(\mathrm { s } \alpha , \beta\) ad \(\gamma\).
  1. Sth th t th le \(6 \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\) is 9
  2. Fid he le \(6 \alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 }\).
  3. Fird cb ceq tin \(N\) ith o s \(\alpha + 1 \beta + 1 \mathrm {~d} \gamma + \underset { \text { g } } { \text { vg } } \quad\) as wer in th fo m $$p x ^ { 3 } + q x ^ { 2 } + r x + s = 0$$ we re \(p , q , r\) ad \(s\) are co tan s to \(\mathbf { b } \quad \mathbf { d }\) termin d
CAIE FP1 2012 June Q1
5 marks Standard +0.8
1 The roots of the cubic equation \(x ^ { 3 } - 7 x ^ { 2 } + 2 x - 3 = 0\) are \(\alpha , \beta , \gamma\). Find the values of
  1. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\),
  2. \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
CAIE FP1 2008 November Q12 OR
The roots of the equation $$x ^ { 4 } - 5 x ^ { 2 } + 2 x - 1 = 0$$ are \(\alpha , \beta , \gamma , \delta\). Let \(S _ { n } = \alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } + \delta ^ { n }\).
  1. Show that $$S _ { n + 4 } - 5 S _ { n + 2 } + 2 S _ { n + 1 } - S _ { n } = 0 .$$
  2. Find the values of \(S _ { 2 }\) and \(S _ { 4 }\).
  3. Find the value of \(S _ { 3 }\) and hence find the value of \(S _ { 6 }\).
  4. Hence find the value of $$\alpha ^ { 2 } \left( \beta ^ { 4 } + \gamma ^ { 4 } + \delta ^ { 4 } \right) + \beta ^ { 2 } \left( \gamma ^ { 4 } + \delta ^ { 4 } + \alpha ^ { 4 } \right) + \gamma ^ { 2 } \left( \delta ^ { 4 } + \alpha ^ { 4 } + \beta ^ { 4 } \right) + \delta ^ { 2 } \left( \alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } \right) .$$ \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2012 November Q11 EITHER
The roots of the equation \(x ^ { 4 } - 3 x ^ { 2 } + 5 x - 2 = 0\) are \(\alpha , \beta , \gamma , \delta\), and \(\alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } + \delta ^ { n }\) is denoted by \(S _ { n }\). Show that $$S _ { n + 4 } - 3 S _ { n + 2 } + 5 S _ { n + 1 } - 2 S _ { n } = 0$$ Find the values of
  1. \(S _ { 2 }\) and \(S _ { 4 }\),
  2. \(S _ { 3 }\) and \(S _ { 5 }\). Hence find the value of $$\alpha ^ { 2 } \left( \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 } \right) + \beta ^ { 2 } \left( \gamma ^ { 3 } + \delta ^ { 3 } + \alpha ^ { 3 } \right) + \gamma ^ { 2 } \left( \delta ^ { 3 } + \alpha ^ { 3 } + \beta ^ { 3 } \right) + \delta ^ { 2 } \left( \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \right) .$$
CAIE FP1 2018 November Q1
5 marks Standard +0.3
1 The roots of the cubic equation $$x ^ { 3 } - 5 x ^ { 2 } + 13 x - 4 = 0$$ are \(\alpha , \beta , \gamma\).
  1. Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\).
  2. Find the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
CAIE FP1 2013 November Q2
6 marks Standard +0.8
2 The cubic equation \(x ^ { 3 } - p x - q = 0\), where \(p\) and \(q\) are constants, has roots \(\alpha , \beta , \gamma\). Show that
  1. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 2 p\),
  2. \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = 3 q\),
  3. \(6 \left( \alpha ^ { 5 } + \beta ^ { 5 } + \gamma ^ { 5 } \right) = 5 \left( \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \right) \left( \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } \right)\).
AQA FP1 2007 January Q3
8 marks Moderate -0.3
3 The quadratic equation $$2 x ^ { 2 } + 4 x + 3 = 0$$ has roots \(\alpha\) and \(\beta\).
  1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
  2. Show that \(\alpha ^ { 2 } + \beta ^ { 2 } = 1\).
  3. Find the value of \(\alpha ^ { 4 } + \beta ^ { 4 }\).
AQA FP2 2011 June Q3
6 marks Challenging +1.2
3
  1. Show that $$( r + 1 ) ! - ( r - 1 ) ! = \left( r ^ { 2 } + r - 1 \right) ( r - 1 ) !$$
  2. Hence show that $$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } + r - 1 \right) ( r - 1 ) ! = ( n + 2 ) n ! - 2$$ (4 marks) The cubic equation $$z ^ { 3 } - 2 z ^ { 2 } + k = 0 \quad ( k \neq 0 )$$ has roots \(\alpha , \beta\) and \(\gamma\).
    1. Write down the values of \(\alpha + \beta + \gamma\) and \(\alpha \beta + \beta \gamma + \gamma \alpha\).
    2. Show that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 4\).
    3. Explain why \(\alpha ^ { 3 } - 2 \alpha ^ { 2 } + k = 0\).
    4. Show that \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = 8 - 3 k\).
  3. Given that \(\alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } = 0\) :
    1. show that \(k = 2\);
    2. find the value of \(\alpha ^ { 5 } + \beta ^ { 5 } + \gamma ^ { 5 }\).
OCR MEI Further Pure Core 2024 June Q3
4 marks Standard +0.3
3 The equation \(2 x ^ { 3 } - 2 x ^ { 2 } + 8 x - 15 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
Determine the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\).
AQA Further Paper 2 2022 June Q3
1 marks Moderate -0.8
3 The roots of the equation \(x ^ { 2 } - p x - 6 = 0\) are \(\alpha\) and \(\beta\) Find \(\alpha ^ { 2 } + \beta ^ { 2 }\) in terms of \(p\)
Circle your answer.
\(p ^ { 2 } - 6\)
\(p ^ { 2 } + 6\)
\(p ^ { 2 } - 12\)
\(p ^ { 2 } + 12\)
AQA Further Paper 2 2023 June Q13
11 marks Standard +0.3
13 The quadratic equation \(z ^ { 2 } - 5 z + 8 = 0\) has roots \(\alpha\) and \(\beta\) 13
  1. Write down the value of \(\alpha + \beta\) and the value of \(\alpha \beta\)
    13
  2. Without finding the value of \(\alpha\) or the value of \(\beta\), show that \(\alpha ^ { 4 } + \beta ^ { 4 } = - 47\)
    [0pt] [4 marks]
    \includegraphics[max width=\textwidth, alt={}]{bc1b33a7-800b-4359-b7ba-6460f17984e5-18_2495_1917_212_150}