CAIE Further Paper 1 2021 November — Question 4

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2021
SessionNovember
TopicRoots of polynomials

4 The cubic equation \(x ^ { 3 } + 2 x ^ { 2 } + 3 x + 3 = 0\) has roots \(\alpha , \beta , \gamma\).
  1. Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\).
  2. Show that \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = 1\).
  3. Use standard results from the list of formulae (MF19) to show that $$\sum _ { r = 1 } ^ { n } \left( ( \alpha + r ) ^ { 3 } + ( \beta + r ) ^ { 3 } + ( \gamma + r ) ^ { 3 } \right) = n + \frac { 1 } { 4 } n ( n + 1 ) \left( a n ^ { 2 } + b n + c \right)$$ where \(a\), \(b\) and \(c\) are constants to be determined.