4 Th cb c ę tin
$$z ^ { 3 } - z ^ { 2 } - z - 5 = 0$$
h s ro \(\mathrm { s } \alpha , \beta\) ad \(\gamma\).
- Sth th t th le \(6 \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\) is 9
- Fid he le \(6 \alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 }\).
- Fird cb ceq tin \(N\) ith o s \(\alpha + 1 \beta + 1 \mathrm {~d} \gamma + \underset { \text { g } } { \text { vg } } \quad\) as wer in th fo m
$$p x ^ { 3 } + q x ^ { 2 } + r x + s = 0$$
we re \(p , q , r\) ad \(s\) are co tan s to \(\mathbf { b } \quad \mathbf { d }\) termin d