A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q7
OCR FP1 2009 June — Question 7
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Year
2009
Session
June
Topic
Sequences and series, recurrence and convergence
7
Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \left\{ ( r + 1 ) ^ { 4 } - r ^ { 4 } \right\} = ( n + 1 ) ^ { 4 } - 1$$
Show that \(( r + 1 ) ^ { 4 } - r ^ { 4 } \equiv 4 r ^ { 3 } + 6 r ^ { 2 } + 4 r + 1\).
Hence show that $$4 \sum _ { r = 1 } ^ { n } r ^ { 3 } = n ^ { 2 } ( n + 1 ) ^ { 2 }$$
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10