A question is this type if and only if it asks to show that a given set with an operation does NOT form a group by identifying which axiom(s) fail.
20 questions · Standard +0.0
| Computer | ||||
| \cline { 2 - 5 } | \(X\) | \(Y\) | \(Z\) | |
| \cline { 2 - 5 } Rose | \(A\) | 1 | 3 | 4 |
| \(B\) | 4 | 3 | 2 | |
| \(C\) | 3 | 2 | 1 | |
| \cline { 2 - 5 } | ||||
| 3 | 1 | 0 |
| 0 | 1 | 2 |
| Brett | ||||
| R | S | T | ||
| \cline { 3 - 5 } \multirow{3}{*}{Annie} | K | \(( 7,3 )\) | \(( 2,6 )\) | \(( 5,3 )\) |
| \cline { 3 - 5 } | L | \(( 1,5 )\) | \(( 8,2 )\) | \(( 2,5 )\) |
| \cline { 3 - 5 } | M | \(( 3,2 )\) | \(( 1,5 )\) | \(( 4,6 )\) |
| \cline { 3 - 5 } | ||||
| \cline { 3 - 5 } | ||||
| X | Y | Z | ||
| \cline { 3 - 5 } | P | \(x\) | 3 | 2 |
| \cline { 3 - 5 } | Q | 4 | 0 | - 2 |
| \cline { 3 - 5 } | R | - 3 | - 1 | - 3 |
| \cline { 3 - 5 } | ||||
| \cline { 3 - 5 } |
| Strategy \(X\) | Strategy \(Y\) | Strategy \(Z\) | |
| Strategy \(P\) | 4 | 5 | - 4 |
| Strategy \(Q\) | 3 | - 1 | 2 |
| Strategy \(R\) | 4 | 0 | 2 |
| \cline { 2 - 3 } \multicolumn{1}{c|}{} | 2 | 3 |
| 2 | 1 | |
| 3 | 1 |
| \multirow{2}{*}{} | Bex | |||
| Strategy | \(\mathbf { B } _ { \mathbf { 1 } }\) | \(\mathbf { B } _ { \mathbf { 2 } }\) | \(\mathbf { B } _ { \mathbf { 3 } }\) | |
| \multirow{4}{*}{Ali} | \(\mathbf { A } _ { \mathbf { 1 } }\) | 2 | -1 | 3 |
| \(\mathbf { A } _ { \mathbf { 2 } }\) | -4 | -2 | 2 | |
| \(\mathbf { A } _ { \mathbf { 3 } }\) | 0 | 1 | 1 | |
| \(\mathrm { A } _ { 4 }\) | -3 | 2 | -2 | |
| Strategy | \(\mathbf { H } _ { \mathbf { 1 } }\) | \(\mathbf { H } _ { \mathbf { 2 } }\) | \(\mathbf { H } _ { \mathbf { 3 } }\) | |
| Summer | \(\mathbf { S } _ { \mathbf { 1 } }\) | 4 | - 4 | 0 |
| \cline { 2 - 5 } | \(\mathbf { S } _ { \mathbf { 2 } }\) | - 12 | 0 | 10 |
| \cline { 2 - 5 } | \(\mathbf { S } _ { \mathbf { 3 } }\) | 10 | 4 | 6 |
| Lui | ||||
| \cline { 2 - 5 } | Strategy | \(\mathbf { L } _ { \mathbf { 1 } }\) | \(\mathbf { L } _ { \mathbf { 2 } }\) | \(\mathbf { L } _ { \mathbf { 3 } }\) |
| \(\mathrm { Kez } \quad \mathbf { K } _ { \mathbf { 1 } }\) | 4 | 1 | - 2 | |
| \(\mathbf { K } _ { \mathbf { 2 } }\) | - 4 | - 2 | 0 | |
| \(\mathbf { K } _ { \mathbf { 3 } }\) | - 2 | - 1 | 2 | |
| Strategy | \(\mathbf { Y } _ { \mathbf { 1 } }\) | \(\mathbf { Y } _ { \mathbf { 2 } }\) | \(\mathbf { Y } _ { \mathbf { 3 } }\) |
| \(\mathbf { X } _ { \mathbf { 1 } }\) | - 4 | 1 | - 3 |
| \(\mathbf { X } _ { \mathbf { 2 } }\) | 4 | - 3 | - 3 |
| \(\mathbf { X } _ { \mathbf { 3 } }\) | - 1 | 1 | - 2 |
| Set | Binary Operation | |
| \{1, 2, 3\} | Addition modulo 4 | □ |
| \{1, 2, 3\} | Multiplication modulo 4 | □ |
| \{0, 1, 2, 3\} | Addition modulo 4 | □ |
| \{0, 1, 2, 3\} | Multiplication modulo 4 | □ |