OCR MEI Further Extra Pure 2020 November — Question 4

Exam BoardOCR MEI
ModuleFurther Extra Pure (Further Extra Pure)
Year2020
SessionNovember
TopicGroups

4
  1. In each of the following cases, a set \(G\) and a binary operation ∘ are given. The operation ∘ may be assumed to be associative on \(G\). Determine which, if any, of the other three group axioms are satisfied by ( \(G , \circ\) ) and which, if any, are not satisfied.
    1. \(G = \{ 2 n + 1 : n \in \mathbb { Z } \}\) and \(\circ\) is addition.
    2. \(G = \{ a + b \sqrt { 2 } : a , b \in \mathbb { Z } \}\) and ∘ is multiplication.
    3. \(G\) is the set of all real numbers and ∘ is multiplication.
  2. A group \(M\) consists of eight \(2 \times 2\) matrices under the operation of matrix multiplication. Five of the eight elements of \(M\) are as follows. $$\frac { 1 } { \sqrt { 2 } } \left( \begin{array} { l l } 1 & \mathrm { i }
    \mathrm { i } & 1 \end{array} \right) \quad \frac { 1 } { \sqrt { 2 } } \left( \begin{array} { r r } - 1 & \mathrm { i }
    \mathrm { i } & - 1 \end{array} \right) \quad \frac { 1 } { \sqrt { 2 } } \left( \begin{array} { r r } 1 & - \mathrm { i }
    - \mathrm { i } & 1 \end{array} \right) \quad \left( \begin{array} { l l } 0 & \mathrm { i }
    \mathrm { i } & 0 \end{array} \right) \quad \left( \begin{array} { l l } 1 & 0
    0 & 1 \end{array} \right)$$
    1. Find the other three elements of \(M\).
      \(( N , * )\) is another group of order 8, with identity element \(e\). You are given that \(N = \langle a , b , c \rangle\) where \(a * a = b * b = c * c = e\).
    2. State whether \(M\) and \(N\) are isomorphic to each other, giving a reason for your answer.