A question is this type if and only if it requires completing a composition/Cayley table for a group or using such a table to deduce group properties.
15 questions · Standard +0.5
| \(p\) | \(q\) | \(r\) | \(s\) | \(t\) | |
| \(p\) | \(t\) | \(s\) | \(p\) | \(r\) | \(q\) |
| \(q\) | \(s\) | \(p\) | \(q\) | \(t\) | \(r\) |
| \(r\) | \(p\) | \(q\) | \(r\) | \(s\) | \(t\) |
| \(s\) | \(r\) | \(t\) | \(s\) | \(q\) | \(p\) |
| \(t\) | \(q\) | \(r\) | \(t\) | \(p\) | \(s\) |
| I | J | K | L | -I | -J | -K | \(- \mathbf { L }\) | |
| I | I | J | K | L | -I | -J | -K | -L |
| J | J | -I | L | -K | -J | I | -L | K |
| K | K | -L | -I | |||||
| L | L | K | ||||||
| -I | -I | -J | ||||||
| -J | -J | I | ||||||
| -K | -K | L | ||||||
| -L | -L | -K |
| \(e\) | \(a\) | \(b\) | \(c\) | \(b c\) | ca | \(a b\) | \(a b c\) | |
| \(e\) | \(e\) | \(a\) | \(b\) | \(c\) | \(b c\) | ca | \(a b\) | \(a b c\) |
| \(a\) | \(a\) | \(e\) | \(a b\) | ca | \(a b c\) | \(c\) | \(b\) | \(b c\) |
| \(b\) | \(b\) | \(a b\) | \(e\) | \(b c\) | \(c\) | \(a b c\) | \(a\) | ca |
| c | \(c\) | ca | \(b c\) | \(e\) | \(b\) | \(a\) | \(a b c\) | \(a b\) |
| \(b c\) | \(b c\) | \(a b c\) | \(c\) | \(b\) | \(e\) | \(a b\) | ca | \(a\) |
| ca | ca | c | \(a b c\) | \(a\) | \(a b\) | \(e\) | \(b c\) | \(b\) |
| \(a b\) | \(a b\) | \(b\) | \(a\) | \(a b c\) | ca | bc | \(e\) | \(c\) |
| \(a b c\) | \(a b c\) | \(b c\) | ca | \(a b\) | \(a\) | \(b\) | \(c\) | \(e\) |
| \(\times _ { 5 }\) | 1 | 2 | 3 | 4 |
| 1 | ||||
| 2 | ||||
| 3 | ||||
| 4 |
| G | 1 | 2 | 4 | 5 | 8 | 10 | 13 | 16 | 17 | 19 | 20 | \(x\) |
| 1 | 1 | 2 | 4 | 5 | 8 | 10 | 13 | 16 | 17 | 19 | 20 | |
| 2 | 2 | 4 | 8 | 10 | 16 | 20 | 5 | \(x\) | 13 | 17 | 19 | |
| 4 | 4 | 8 | 16 | 20 | \(x\) | 19 | 10 | 1 | 5 | 13 | 17 | |
| 5 | 5 | 10 | 20 | 4 | 19 | 8 | 2 | 17 | 1 | \(x\) | 16 | |
| 8 | 8 | 16 | \(x\) | 19 | 1 | 17 | 20 | 2 | 10 | 5 | 13 | |
| 10 | 10 | 20 | 19 | 8 | 17 | 16 | 4 | 13 | 2 | 1 | \(x\) | |
| 13 | 13 | 5 | 10 | 2 | 20 | 4 | 1 | 19 | \(x\) | 16 | 8 | |
| 16 | 16 | \(x\) | 1 | 17 | 2 | 13 | 19 | 4 | 20 | 10 | 5 | |
| 17 | 17 | 13 | 5 | 1 | 10 | 2 | \(x\) | 20 | 16 | 8 | 4 | |
| 19 | 19 | 17 | 13 | \(x\) | 5 | 1 | 16 | 10 | 8 | 4 | 2 | |
| 20 | 20 | 19 | 17 | 16 | 13 | \(x\) | 8 | 5 | 4 | 2 | 1 | |
| \(x\) |
| \(a\) | \(b\) | \(c\) | \(d\) | |
| \(a\) | \(b\) | \(a\) | ||
| \(b\) | ||||
| \(c\) | \(c\) | |||
| \(d\) | \(d\) | \(a\) |
| * | \(e\) | \(\boldsymbol { p }\) | \(\boldsymbol { q }\) | \(r\) | \(s\) |
| \(e\) | |||||
| \(\boldsymbol { p }\) | |||||
| \(\boldsymbol { q }\) | |||||
| \(\boldsymbol { r }\) | |||||
| \(S\) |
| * | \(e\) | \(\boldsymbol { p }\) | \(\boldsymbol { q }\) | \(r\) | \(s\) |
| \(e\) | |||||
| \(\boldsymbol { p }\) | |||||
| \(\boldsymbol { q }\) | |||||
| \(\boldsymbol { r }\) | |||||
| \(S\) |
| • | \(a\) | \(b\) | \(c\) | \(d\) |
| \(a\) | \(b\) | \(a\) | \(a\) | \(c\) |
| \(b\) | \(c\) | \(c\) | ||
| \(c\) | \(d\) | \(d\) | ||
| \(d\) | \(d\) | \(d\) |
| \(\odot\) | \(a\) | \(b\) | \(c\) | \(d\) |
| \(a\) | \(a\) | \(a\) | \(a\) | \(a\) |
| \(b\) | \(a\) | \(d\) | \(b\) | \(c\) |
| \(c\) | \(a\) | \(b\) | \(c\) | \(d\) |
| \(d\) | \(a\) | \(c\) | \(d\) | \(a\) |
| \(\times _ { 4 }\) | 0 | 1 | 2 | 3 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 |
| 2 | 0 | 2 | 0 | 2 |
| 3 | 0 | 3 | 2 | 1 |
| A | B | C | D | |
| A | A | D | ||
| B | B | |||
| C | C | |||
| D | D |
| - | \(a\) | \(b\) | c |
| \(a\) | \(a\) | c | b |
| \(b\) | \(b\) | \(а\) | |
| c | c |
| A | \(e\) | \(r\) | \(r ^ { 2 }\) | \(q\) | \(q r\) | \(q r ^ { 2 }\) |
| \(e\) | \(e\) | \(r\) | \(r ^ { 2 }\) | \(q\) | \(q r\) | \(q r ^ { 2 }\) |
| \(r\) | \(r\) | \(r ^ { 2 }\) | \(e\) | |||
| \(r ^ { 2 }\) | \(r ^ { 2 }\) | \(e\) | \(r\) | |||
| \(q\) | \(q\) | \(q r\) | \(q r ^ { 2 }\) | \(e\) | ||
| \(q r\) | \(q r\) | \(q r ^ { 2 }\) | \(q\) | \(r ^ { 2 }\) | ||
| \(q r ^ { 2 }\) | \(q r ^ { 2 }\) | \(q\) | \(q r\) | \(r\) | \(r ^ { 2 }\) | \(e\) |