8 The set \(S\) is defined as
$$S = \{ a , b , c , d \}$$
Figure 2 shows a Cayley table for \(S\) under the commutative binary operation
\begin{table}[h]
\captionsetup{labelformat=empty}
\caption{Figure 2}
| \(\odot\) | \(a\) | \(b\) | \(c\) | \(d\) |
| \(a\) | \(a\) | \(a\) | \(a\) | \(a\) |
| \(b\) | \(a\) | \(d\) | \(b\) | \(c\) |
| \(c\) | \(a\) | \(b\) | \(c\) | \(d\) |
| \(d\) | \(a\) | \(c\) | \(d\) | \(a\) |
\end{table}
8
- Prove that there exists an identity element for \(S\) under the binary operation
[0pt]
[2 marks]
8
- (ii) State the inverse of \(b\) under the binary operation
8 - Figure 3 shows a Cayley table for multiplication modulo 4
\begin{table}[h]
\captionsetup{labelformat=empty}
\caption{Figure 3}
| \(\times _ { 4 }\) | 0 | 1 | 2 | 3 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 |
| 2 | 0 | 2 | 0 | 2 |
| 3 | 0 | 3 | 2 | 1 |
\end{table}
Mali says that, by substituting suitable distinct values for \(a , b , c\) and \(d\), the Cayley table in Figure 2 could represent multiplication modulo 4
Use your answers to part (a) to show that Mali's statement is incorrect.
\includegraphics[max width=\textwidth, alt={}, center]{21ed3b4e-a089-4607-b5d6-69d8aac03f31-20_2491_1736_219_139}