6 The set \(S\) is given by \(S = \{ \mathbf { A } , \mathbf { B } , \mathbf { C } , \mathbf { D } \}\) where
\(\mathbf { A } = \left[ \begin{array} { l l } 1 & 0
0 & 0 \end{array} \right]\)
\(\mathbf { B } = \left[ \begin{array} { l l } 1 & 0
0 & 1 \end{array} \right]\)
\(\mathbf { C } = \left[ \begin{array} { l l } 0 & 0
0 & 1 \end{array} \right]\)
\(\mathbf { D } = \left[ \begin{array} { l l } 0 & 0
0 & 0 \end{array} \right]\)
6
- Complete the Cayley table for \(S\) under matrix multiplication.
6
- Using the Cayley table above, explain why \(\mathbf { B }\) is the identity element of \(S\) under matrix multiplication.
[0pt]
[1 mark]
6 - Sam states that the Cayley table in part (a) shows that matrix multiplication is commutative.
Comment on the validity of Sam's statement.