\(\mathbf { 4 }\) The group \(G\) consists of the 8 complex matrices \(\{ \mathbf { I } , \mathbf { J } , \mathbf { K } , \mathbf { L } , - \mathbf { I } , - \mathbf { J } , - \mathbf { K } , - \mathbf { L } \}\) under matrix multiplication, where
$$\mathbf { I } = \left( \begin{array} { l l }
1 & 0
0 & 1
\end{array} \right) , \quad \mathbf { J } = \left( \begin{array} { r r }
\mathrm { j } & 0
0 & - \mathrm { j }
\end{array} \right) , \quad \mathbf { K } = \left( \begin{array} { r r }
0 & 1
- 1 & 0
\end{array} \right) , \quad \mathbf { L } = \left( \begin{array} { c c }
0 & \mathrm { j }
\mathrm { j } & 0
\end{array} \right)$$
- Copy and complete the following composition table for \(G\).
| I | J | K | L | -I | -J | -K | \(- \mathbf { L }\) |
| I | I | J | K | L | -I | -J | -K | -L |
| J | J | -I | L | -K | -J | I | -L | K |
| K | K | -L | -I | | | | | |
| L | L | K | | | | | | |
| -I | -I | -J | | | | | | |
| -J | -J | I | | | | | | |
| -K | -K | L | | | | | | |
| -L | -L | -K | | | | | | |
(Note that \(\mathbf { J K } = \mathbf { L }\) and \(\mathbf { K J } = - \mathbf { L }\).) - State the inverse of each element of \(G\).
- Find the order of each element of \(G\).
- Explain why, if \(G\) has a subgroup of order 4, that subgroup must be cyclic.
- Find all the proper subgroups of \(G\).
- Show that \(G\) is not isomorphic to the group of symmetries of a square.