OCR MEI FP3 2006 June — Question 4

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2006
SessionJune
TopicGroups

\(\mathbf { 4 }\) The group \(G\) consists of the 8 complex matrices \(\{ \mathbf { I } , \mathbf { J } , \mathbf { K } , \mathbf { L } , - \mathbf { I } , - \mathbf { J } , - \mathbf { K } , - \mathbf { L } \}\) under matrix multiplication, where $$\mathbf { I } = \left( \begin{array} { l l } 1 & 0
0 & 1 \end{array} \right) , \quad \mathbf { J } = \left( \begin{array} { r r } \mathrm { j } & 0
0 & - \mathrm { j } \end{array} \right) , \quad \mathbf { K } = \left( \begin{array} { r r } 0 & 1
- 1 & 0 \end{array} \right) , \quad \mathbf { L } = \left( \begin{array} { c c } 0 & \mathrm { j }
\mathrm { j } & 0 \end{array} \right)$$
  1. Copy and complete the following composition table for \(G\).
    IJKL-I-J-K\(- \mathbf { L }\)
    IIJKL-I-J-K-L
    JJ-IL-K-JI-LK
    KK-L-I
    LLK
    -I-I-J
    -J-JI
    -K-KL
    -L-L-K
    (Note that \(\mathbf { J K } = \mathbf { L }\) and \(\mathbf { K J } = - \mathbf { L }\).)
  2. State the inverse of each element of \(G\).
  3. Find the order of each element of \(G\).
  4. Explain why, if \(G\) has a subgroup of order 4, that subgroup must be cyclic.
  5. Find all the proper subgroups of \(G\).
  6. Show that \(G\) is not isomorphic to the group of symmetries of a square.