6 The group \(( G , \boldsymbol { A } )\) has the elements \(e , r , r ^ { 2 } , q , q r\) and \(q r ^ { 2 }\), where \(r ^ { 2 } = r \boldsymbol { \Delta } r , q r = q \boldsymbol { \Delta } r , q r ^ { 2 } = q \boldsymbol { \Delta } r ^ { 2 }\) and \(e\) is the identity element of \(G\).
The elements \(q\) and \(r\) have the following properties:
$$\begin{aligned}
& r \boldsymbol { \Delta } r \boldsymbol { \Delta } r = e
& q \boldsymbol { \Delta } q = e
& r ^ { 2 } \boldsymbol { \Delta } q = q \boldsymbol { \Delta } r
\end{aligned}$$
6
- State the order of \(G\).
6
- (ii) Prove that the inverse of \(q r\) is \(q r\).
6 - Complete the Cayley table for elements of \(G\).
6
- Complete the Cayley table for elements of \(G\).
| A | \(e\) | \(r\) | \(r ^ { 2 }\) | \(q\) | \(q r\) | \(q r ^ { 2 }\) |
| \(e\) | \(e\) | \(r\) | \(r ^ { 2 }\) | \(q\) | \(q r\) | \(q r ^ { 2 }\) |
| \(r\) | \(r\) | \(r ^ { 2 }\) | \(e\) | | | |
| \(r ^ { 2 }\) | \(r ^ { 2 }\) | \(e\) | \(r\) | | | |
| \(q\) | \(q\) | \(q r\) | \(q r ^ { 2 }\) | \(e\) | | |
| \(q r\) | \(q r\) | \(q r ^ { 2 }\) | \(q\) | \(r ^ { 2 }\) | | |
| \(q r ^ { 2 }\) | \(q r ^ { 2 }\) | \(q\) | \(q r\) | \(r\) | \(r ^ { 2 }\) | \(e\) |
6 - State the name of a group which is isomorphic to \(G\).