Sums Between Limits

A question is this type if and only if it requires finding Σ from r=a to r=b (not starting at 1) by subtracting cumulative sums or using range manipulation.

10 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
Edexcel FP1 2009 January Q2
7 marks Moderate -0.3
2. (a) Show, using the formulae for \(\sum r\) and \(\sum r ^ { 2 }\), that $$\sum _ { r = 1 } ^ { n } \left( 6 r ^ { 2 } + 4 r - 1 \right) = n ( n + 2 ) ( 2 n + 1 )$$ (b) Hence, or otherwise, find the value of \(\sum _ { r = 11 } ^ { 20 } \left( 6 r ^ { 2 } + 4 r - 1 \right)\).
Edexcel FP1 2012 June Q4
7 marks Standard +0.3
4. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that $$\sum _ { r = 1 } ^ { n } \left( r ^ { 3 } + 6 r - 3 \right) = \frac { 1 } { 4 } n ^ { 2 } \left( n ^ { 2 } + 2 n + 13 \right)$$ for all positive integers \(n\).
(b) Hence find the exact value of $$\sum _ { r = 16 } ^ { 30 } \left( r ^ { 3 } + 6 r - 3 \right)$$
Edexcel FP1 2014 June Q5
8 marks Standard +0.3
  1. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that
$$\sum _ { r = 1 } ^ { n } r \left( r ^ { 2 } - 3 \right) = \frac { 1 } { 4 } n ( n + 1 ) ( n + 3 ) ( n - 2 )$$ (b) Calculate the value of \(\sum _ { r = 10 } ^ { 50 } r \left( r ^ { 2 } - 3 \right)\)
Edexcel FP1 2014 June Q5
9 marks Standard +0.8
5. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that $$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$ (b) Hence show that $$\sum _ { r = 2 n + 1 } ^ { 4 n } ( 2 r - 1 ) ^ { 2 } = a n \left( b n ^ { 2 } - 1 \right)$$ where \(a\) and \(b\) are constants to be found.
Edexcel FP1 2015 June Q3
8 marks Standard +0.3
3. (a) Using the formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\), show that $$\sum _ { r = 1 } ^ { n } ( r + 1 ) ( r + 4 ) = \frac { n } { 3 } ( n + 4 ) ( n + 5 )$$ for all positive integers \(n\).
(b) Hence show that $$\sum _ { r = n + 1 } ^ { 2 n } ( r + 1 ) ( r + 4 ) = \frac { n } { 3 } ( n + 1 ) ( a n + b )$$ where \(a\) and \(b\) are integers to be found.
OCR FP1 2009 June Q1
3 marks Moderate -0.5
1 Evaluate \(\sum _ { r = 101 } ^ { 250 } r ^ { 3 }\).
OCR FP1 2014 June Q8
9 marks Standard +0.8
8
  1. Show that \(\sum _ { r = n } ^ { 2 n } r ^ { 3 } = \frac { 3 } { 4 } n ^ { 2 } ( n + 1 ) ( 5 n + 1 )\).
  2. Hence find \(\sum _ { r = n } ^ { 2 n } r \left( r ^ { 2 } - 2 \right)\), giving your answer in a fully factorised form.
OCR Further Pure Core 2 2024 June Q4
5 marks Challenging +1.2
4 In this question you must show detailed reasoning.
The series \(S\) is defined as being the sum of the squares of all positive odd integers from \(1 ^ { 2 }\) to \(779 ^ { 2 }\). Determine the value of \(S\).
OCR MEI Further Pure Core AS 2024 June Q3
6 marks Standard +0.3
3
  1. Using standard summation formulae, write down an expression in terms of \(n\) for \(\sum _ { r = 1 } ^ { 2 n } r ^ { 3 }\).
  2. Hence show that \(\sum _ { \mathrm { r } = \mathrm { n } + 1 } ^ { 2 \mathrm { n } } \mathrm { r } ^ { 3 } = \frac { 1 } { 4 } \mathrm { n } ^ { 2 } ( \mathrm { an } + \mathrm { b } ) ( \mathrm { cn } + \mathrm { d } )\), where \(a , b , c\) and \(d\) are integers to be determined.
OCR MEI Further Pure Core AS Specimen Q6
5 marks Standard +0.8
6
  1. Show that, when \(n = 5 , \sum _ { r = n + 1 } ^ { 2 n } r ^ { 2 } = 330\).
  2. Find, in terms of \(n\), a fully factorised expression for \(\sum _ { r = n + 1 } ^ { 2 n } r ^ { 2 }\).