Edexcel FP1 2014 June — Question 5

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2014
SessionJune
TopicSequences and Series

  1. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that
$$\sum _ { r = 1 } ^ { n } r \left( r ^ { 2 } - 3 \right) = \frac { 1 } { 4 } n ( n + 1 ) ( n + 3 ) ( n - 2 )$$ (b) Calculate the value of \(\sum _ { r = 10 } ^ { 50 } r \left( r ^ { 2 } - 3 \right)\)