| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2014 |
| Session | June |
| Topic | Sequences and Series |
5. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that
$$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$
(b) Hence show that
$$\sum _ { r = 2 n + 1 } ^ { 4 n } ( 2 r - 1 ) ^ { 2 } = a n \left( b n ^ { 2 } - 1 \right)$$
where \(a\) and \(b\) are constants to be found.