| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | June |
| Topic | Sequences and Series |
4. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that
$$\sum _ { r = 1 } ^ { n } \left( r ^ { 3 } + 6 r - 3 \right) = \frac { 1 } { 4 } n ^ { 2 } \left( n ^ { 2 } + 2 n + 13 \right)$$
for all positive integers \(n\).
(b) Hence find the exact value of
$$\sum _ { r = 16 } ^ { 30 } \left( r ^ { 3 } + 6 r - 3 \right)$$