| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2015 |
| Session | June |
| Topic | Sequences and Series |
3. (a) Using the formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\), show that
$$\sum _ { r = 1 } ^ { n } ( r + 1 ) ( r + 4 ) = \frac { n } { 3 } ( n + 4 ) ( n + 5 )$$
for all positive integers \(n\).
(b) Hence show that
$$\sum _ { r = n + 1 } ^ { 2 n } ( r + 1 ) ( r + 4 ) = \frac { n } { 3 } ( n + 1 ) ( a n + b )$$
where \(a\) and \(b\) are integers to be found.