Sum of Powers Using Standard Formulae

A question is this type if and only if it requires proving or deriving expressions for sums like Σr², Σr³, or Σ(ar²+br+c) using standard summation formulae from the formula list.

17 questions · Standard +0.0

Sort by: Default | Easiest first | Hardest first
Edexcel F1 2014 January Q5
8 marks Standard +0.3
5. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that $$\sum _ { r = 1 } ^ { n } \left( 9 r ^ { 2 } - 4 r \right) = \frac { 1 } { 2 } n ( n + 1 ) ( 6 n - 1 )$$ for all positive integers \(n\). Given that $$\sum _ { r = 1 } ^ { 12 } \left( 9 r ^ { 2 } - 4 r + k \left( 2 ^ { r } \right) \right) = 6630$$ (b) find the exact value of the constant \(k\).
Edexcel FP1 2013 January Q1
5 marks Moderate -0.3
  1. Show, using the formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\), that
$$\sum _ { r = 1 } ^ { n } 3 ( 2 r - 1 ) ^ { 2 } = n ( 2 n + 1 ) ( 2 n - 1 ) , \text { for all positive integers } n .$$
Edexcel FP1 2014 January Q6
9 marks Standard +0.3
6. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r - 1 ) = \frac { 1 } { 4 } n ( n + 1 ) ( n - 1 ) ( n + a )$$ where \(a\) is an integer to be determined.
(b) Hence find the value of \(n\), where \(n > 1\), that satisfies $$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r - 1 ) = 10 \sum _ { r = 1 } ^ { n } r ^ { 2 }$$
Edexcel FP1 2013 June Q10
8 marks Moderate -0.3
10. (i) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) and \(\sum _ { r = 1 } ^ { n } r\) to evaluate $$\sum _ { r = 1 } ^ { 24 } \left( r ^ { 3 } - 4 r \right)$$ (ii) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that $$\sum _ { r = 0 } ^ { n } \left( r ^ { 2 } - 2 r + 2 n + 1 \right) = \frac { 1 } { 6 } ( n + 1 ) ( n + a ) ( b n + c )$$ for all integers \(n \geqslant 0\), where \(a , b\) and \(c\) are constant integers to be found.
Edexcel FP1 2017 June Q8
9 marks Standard +0.3
8. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that $$\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 2 } + 8 r + 3 \right) = \frac { 1 } { 2 } n ( 2 n + 5 ) ( n + 3 )$$ for all positive integers \(n\). Given that $$\sum _ { r = 1 } ^ { 12 } \left( 3 r ^ { 2 } + 8 r + 3 + k \left( 2 ^ { r - 1 } \right) \right) = 3520$$ (b) find the exact value of the constant \(k\).
Edexcel FP1 2018 June Q4
9 marks Standard +0.3
  1. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } - r - 8 \right) = \frac { 1 } { 3 } n ( n - a ) ( n + a )$$ where \(a\) is a positive integer to be determined.
(b) Hence, or otherwise, state the positive value of \(n\) that satisfies $$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } - r - 8 \right) = 0$$ Given that $$\sum _ { r = 3 } ^ { 17 } \left( k r ^ { 3 } + r ^ { 2 } - r - 8 \right) = 6710 \quad \text { where } k \text { is a constant }$$ (c) find the exact value of \(k\).
OCR MEI FP1 2005 June Q7
6 marks Moderate -0.5
7 Find \(\sum _ { r = 1 } ^ { n } 3 r ( r - 1 )\), expressing your answer in a fully factorised form.
Edexcel AEA 2013 June Q4
13 marks Challenging +1.2
4.A sequence of positive integers \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) has \(r\) th term given by $$a _ { r } = 2 ^ { r } - 1$$ (a)Write down the first 6 terms of this sequence.
(b)Verify that \(a _ { r + 1 } = 2 a _ { r } + 1\)
(c)Find \(\sum _ { r = 1 } ^ { n } a _ { r }\)
(d)Show that \(\frac { 1 } { a _ { r + 1 } } < \frac { 1 } { 2 } \times \frac { 1 } { a _ { r } }\)
(e)Hence show that \(1 + \frac { 1 } { 3 } + \frac { 1 } { 7 } + \frac { 1 } { 15 } + \frac { 1 } { 31 } + \ldots < 1 + \frac { 1 } { 3 } + \left( \frac { 1 } { 7 } + \frac { \frac { 1 } { 2 } } { 7 } + \frac { \frac { 1 } { 4 } } { 7 } + \ldots \right)\)
(f)Show that \(\frac { 31 } { 21 } < \sum _ { r = 1 } ^ { \infty } \frac { 1 } { a _ { r } } < \frac { 34 } { 21 }\)
OCR FP1 2013 January Q2
6 marks Moderate -0.5
2 Find \(\sum _ { r = 1 } ^ { n } ( r - 1 ) ( r + 1 )\), giving your answer in a fully factorised form.
OCR FP1 2010 June Q3
6 marks Moderate -0.5
3 Find \(\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 }\), expressing your answer in a fully factorised form.
OCR MEI FP1 2009 January Q6
6 marks Standard +0.3
6 Using the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) show that $$\sum _ { r = 1 } ^ { n } r \left( r ^ { 2 } - 3 \right) = \frac { 1 } { 4 } n ( n + 1 ) ( n + 3 ) ( n - 2 ) .$$
OCR MEI FP1 2011 January Q5
5 marks Moderate -0.3
5 Use standard series formulae to show that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } ( 3 - 4 r ) = \frac { 1 } { 2 } n ( n + 1 ) \left( 1 - 2 n ^ { 2 } \right)\).
CAIE FP1 2015 June Q1
4 marks Moderate -0.8
1 Use the List of Formulae (MF10) to show that \(\sum _ { r = 1 } ^ { 13 } \left( 3 r ^ { 2 } - 5 r + 1 \right)\) and \(\sum _ { r = 0 } ^ { 9 } \left( r ^ { 3 } - 1 \right)\) have the same numerical value.
CAIE FP1 2017 November Q1
4 marks Standard +0.3
1 Find \(\sum _ { r = 1 } ^ { n } ( 4 r - 3 ) ( 4 r + 1 )\), giving your answer in its simplest form.
AQA FP1 2013 June Q7
11 marks Standard +0.3
7
  1. Show that the equation \(4 x ^ { 3 } - x - 540000 = 0\) has a root, \(\alpha\), in the interval \(51 < \alpha < 52\).
  2. It is given that \(S _ { n } = \sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 }\).
    1. Use the formulae for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that \(S _ { n } = \frac { n } { 3 } \left( k n ^ { 2 } - 1 \right)\), where \(k\) is an integer to be found.
    2. Hence show that \(6 S _ { n }\) can be written as the product of three consecutive integers.
  3. Find the smallest value of \(N\) for which the sum of the squares of the first \(N\) odd numbers is greater than 180000 .
AQA FP1 2016 June Q5
4 marks Standard +0.8
5
  1. Use the formulae for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that \(\sum _ { r = 1 } ^ { n } ( 6 r - 3 ) ^ { 2 } = 3 n \left( 4 n ^ { 2 } - 1 \right)\).
  2. Hence express \(\sum _ { r = 1 } ^ { 2 n } r ^ { 3 } - \sum _ { r = 1 } ^ { n } ( 6 r - 3 ) ^ { 2 }\) as a product of four linear factors in terms of \(n\).
    [0pt] [4 marks]
OCR MEI Further Pure Core AS 2021 November Q1
3 marks Moderate -0.8
1 Using standard summation formulae, find \(\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } - 3 r \right)\), giving your answer in fully factorised form.