| Exam Board | Edexcel |
| Module | F1 (Further Pure Mathematics 1) |
| Year | 2014 |
| Session | January |
| Topic | Sequences and Series |
5. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that
$$\sum _ { r = 1 } ^ { n } \left( 9 r ^ { 2 } - 4 r \right) = \frac { 1 } { 2 } n ( n + 1 ) ( 6 n - 1 )$$
for all positive integers \(n\).
Given that
$$\sum _ { r = 1 } ^ { 12 } \left( 9 r ^ { 2 } - 4 r + k \left( 2 ^ { r } \right) \right) = 6630$$
(b) find the exact value of the constant \(k\).