Edexcel FP1 2018 June — Question 4

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2018
SessionJune
TopicSequences and Series

  1. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } - r - 8 \right) = \frac { 1 } { 3 } n ( n - a ) ( n + a )$$ where \(a\) is a positive integer to be determined.
(b) Hence, or otherwise, state the positive value of \(n\) that satisfies $$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } - r - 8 \right) = 0$$ Given that $$\sum _ { r = 3 } ^ { 17 } \left( k r ^ { 3 } + r ^ { 2 } - r - 8 \right) = 6710 \quad \text { where } k \text { is a constant }$$ (c) find the exact value of \(k\).