| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2017 |
| Session | June |
| Topic | Sequences and Series |
8. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that
$$\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 2 } + 8 r + 3 \right) = \frac { 1 } { 2 } n ( 2 n + 5 ) ( n + 3 )$$
for all positive integers \(n\).
Given that
$$\sum _ { r = 1 } ^ { 12 } \left( 3 r ^ { 2 } + 8 r + 3 + k \left( 2 ^ { r - 1 } \right) \right) = 3520$$
(b) find the exact value of the constant \(k\).