Find stationary/turning points

A question is this type if and only if it asks to find coordinates of maximum, minimum, or stationary points on a parametric curve by setting dy/dx = 0.

30 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
CAIE P2 2023 June Q5
8 marks Standard +0.8
5
\includegraphics[max width=\textwidth, alt={}, center]{3966e088-0a2f-434a-94fc-40765cd157a7-06_376_848_269_644} The diagram shows the curve with parametric equations $$x = 4 \mathrm { e } ^ { 2 t } , \quad y = 5 \mathrm { e } ^ { - t } \cos 2 t$$ for \(- \frac { 1 } { 4 } \pi \leqslant t \leqslant \frac { 1 } { 4 } \pi\). The curve has a maximum point \(M\).
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find the coordinates of \(M\), giving each coordinate correct to 3 significant figures.
CAIE P2 2016 November Q6
9 marks Standard +0.3
6 A curve has parametric equations $$x = \ln ( t + 1 ) , \quad y = t ^ { 2 } \ln t$$
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find the exact value of \(t\) at the stationary point.
  3. Find the gradient of the curve at the point where it crosses the \(x\)-axis.
  4. Express \(\sin 2 \theta ( 3 \sec \theta + 4 \operatorname { cosec } \theta )\) in the form \(a \sin \theta + b \cos \theta\), where \(a\) and \(b\) are integers.
  5. Hence express \(\sin 2 \theta ( 3 \sec \theta + 4 \operatorname { cosec } \theta )\) in the form \(R \sin ( \theta + \alpha )\) where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  6. Using the result of part (ii), solve the equation \(\sin 2 \theta ( 3 \sec \theta + 4 \operatorname { cosec } \theta ) = 7\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
CAIE P2 2017 November Q6
9 marks Standard +0.3
6 The parametric equations of a curve are $$x = 2 \mathrm { e } ^ { 2 t } + 4 \mathrm { e } ^ { t } , \quad y = 5 t \mathrm { e } ^ { 2 t }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\) and hence find the coordinates of the stationary point, giving each coordinate correct to 2 decimal places.
  2. Find the gradient of the normal to the curve at the point where the curve crosses the \(x\)-axis.
CAIE P3 2021 June Q3
7 marks Standard +0.3
3 The parametric equations of a curve are $$x = t + \ln ( t + 2 ) , \quad y = ( t - 1 ) \mathrm { e } ^ { - 2 t }$$ where \(t > - 2\).
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\), simplifying your answer.
  2. Find the exact \(y\)-coordinate of the stationary point of the curve.
CAIE P3 2020 November Q5
7 marks Standard +0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{77a45360-8e1d-4f4f-9830-075d832a14cf-08_334_895_258_625} The diagram shows the curve with parametric equations $$x = \tan \theta , \quad y = \cos ^ { 2 } \theta$$ for \(- \frac { 1 } { 2 } \pi < \theta < \frac { 1 } { 2 } \pi\).
  1. Show that the gradient of the curve at the point with parameter \(\theta\) is \(- 2 \sin \theta \cos ^ { 3 } \theta\).
    The gradient of the curve has its maximum value at the point \(P\).
  2. Find the exact value of the \(x\)-coordinate of \(P\).
Edexcel C34 2017 January Q13
12 marks Standard +0.3
13. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e30f0c28-1695-40a1-8e9a-6ea7e29042bf-24_515_750_264_598} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} The curve \(C\) shown in Figure 4 has parametric equations $$x = 1 + \sqrt { 3 } \tan \theta , \quad y = 5 \sec \theta , \quad - \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 }$$ The curve \(C\) crosses the \(y\)-axis at \(A\) and has a minimum turning point at \(B\), as shown in Figure 4.
  1. Find the exact coordinates of \(A\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \lambda \sin \theta\), giving the exact value of the constant \(\lambda\).
  3. Find the coordinates of \(B\).
  4. Show that the cartesian equation for the curve \(C\) can be written in the form $$y = k \sqrt { \left( x ^ { 2 } - 2 x + 4 \right) }$$ where \(k\) is a simplified surd to be found.
Edexcel C4 2012 January Q5
8 marks Standard +0.3
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8c963567-d751-4898-b7a7-7095d90514f0-07_687_1209_214_370} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = 4 \sin \left( t + \frac { \pi } { 6 } \right) , \quad y = 3 \cos 2 t , \quad 0 \leqslant t < 2 \pi$$
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find the coordinates of all the points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
Edexcel C4 2016 June Q5
6 marks Standard +0.3
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cbfbb690-bc85-46e5-a97f-35df4b6f1c84-09_605_1131_248_466} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = 4 \tan t , \quad y = 5 \sqrt { 3 } \sin 2 t , \quad 0 \leqslant t < \frac { \pi } { 2 }$$ The point \(P\) lies on \(C\) and has coordinates \(\left( 4 \sqrt { 3 } , \frac { 15 } { 2 } \right)\).
  1. Find the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at the point \(P\). Give your answer as a simplified surd. The point \(Q\) lies on the curve \(C\), where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
  2. Find the exact coordinates of the point \(Q\).
OCR MEI C4 2010 June Q8
18 marks Standard +0.3
8 Part of the track of a roller-coaster is modelled by a curve with the parametric equations $$x = 2 \theta - \sin \theta , \quad y = 4 \cos \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi$$ This is shown in Fig. 8. B is a minimum point, and BC is vertical. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5c149cb5-7392-4219-b285-486f4694aa6f-4_602_1447_488_351} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the values of the parameter at A and B . Hence show that the ratio of the lengths OA and AC is \(( \pi - 1 ) : ( \pi + 1 )\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Find the gradient of the track at A .
  3. Show that, when the gradient of the track is \(1 , \theta\) satisfies the equation $$\cos \theta - 4 \sin \theta = 2 .$$
  4. Express \(\cos \theta - 4 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\). Hence solve the equation \(\cos \theta - 4 \sin \theta = 2\) for \(0 \leqslant \theta \leqslant 2 \pi\). {www.ocr.org.uk}) after the live examination series.
    If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
    OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }\section*{ADVANCED GCE
    MATHEMATICS (MEI)} 4754B
    Applications of Advanced Mathematics (C4) Paper B: Comprehension \section*{Candidates answer on the Question Paper} OCR Supplied Materials:
    • Insert (inserted)
    • MEI Examination Formulae and Tables (MF2)
    \section*{Other Materials Required:}
    • Rough paper
    • Scientific or graphical calculator
    Wednesday 9 June 2010 Afternoon
    \includegraphics[max width=\textwidth, alt={}, center]{5c149cb5-7392-4219-b285-486f4694aa6f-5_264_456_881_1361} 1 The train journey from Swansea to London is 307 km and that by road is 300 km . Carry out the calculations performed on the First Great Western website to estimate how much lower the carbon dioxide emissions are when travelling by rail rather than road.
    2 The equation of the curve in Fig. 3 is $$y = \frac { 1 } { 10 ^ { 4 } } \left( x ^ { 3 } - 100 x ^ { 2 } - 10000 x + 2100100 \right)$$ Calculate the speed at which the car has its lowest carbon dioxide emissions and the value of its emissions at that speed.
    [0pt] [An answer obtained from the graph will be given no marks.]
    3
  5. In line 109 the carbon dioxide emissions for a particular train journey from Exeter to London are estimated to be 3.7 tonnes. Obtain this figure.
  6. The text then goes on to state that the emissions per extra passenger on this journey are less than \(\frac { 1 } { 2 } \mathrm {~kg}\). Justify this figure.
  7. \(\_\_\_\_\)
  8. \(\_\_\_\_\)
    4 The daily number of trains, \(n\), on a line in another country may be modelled by the function defined below, where \(P\) is the annual number of passengers. $$\begin{aligned} & n = 10 \text { for } 0 \leqslant P < 10 ^ { 6 } \\ & n = 11 \text { for } 10 ^ { 6 } \leqslant P < 1.5 \times 10 ^ { 6 } \\ & n = 12 \text { for } 1.5 \times 10 ^ { 6 } \leqslant P < 2 \times 10 ^ { 6 } \\ & n = 13 \text { for } 2 \times 10 ^ { 6 } \leqslant P < 2.5 \times 10 ^ { 6 } \\ & n = 14 \text { for } 2.5 \times 10 ^ { 6 } \leqslant P < 3 \times 10 ^ { 6 } \\ & \ldots \text { and so on } \ldots \end{aligned}$$
  9. Sketch the graph of \(n\) against \(P\).
  10. Describe, in words, the relationship between the daily number of trains and the annual number of passengers.

  11. \includegraphics[max width=\textwidth, alt={}, center]{5c149cb5-7392-4219-b285-486f4694aa6f-7_716_1249_1011_440}
  12. \(\_\_\_\_\)
    5 The FGW website gives the conversion factor for miles to kilometres to 7 significant figures.
    "We got the distance between the two stations by road from \href{http://theaa.com}{theaa.com}. We then converted this distance to kilometres by multiplying it by \(1.609344 . "\) Suppose this conversion factor is applied to a distance of exactly 100 miles.
    State which one of the following best expresses the level of accuracy for the distance in metric units, justifying your answer. A : to the nearest millimetre
    B : to the nearest 10 centimetres
    C : to the nearest metre
OCR C4 Q6
12 marks Standard +0.3
6. A curve has parametric equations $$x = 3 \cos ^ { 2 } t , \quad y = \sin 2 t , \quad 0 \leq t < \pi$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 2 } { 3 } \cot 2 t\).
  2. Find the coordinates of the points where the tangent to the curve is parallel to the \(x\)-axis.
  3. Show that the tangent to the curve at the point where \(t = \frac { \pi } { 6 }\) has the equation $$2 x + 3 \sqrt { 3 } y = 9$$
  4. Find a cartesian equation for the curve in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
OCR C4 Q4
6 marks Standard +0.3
4.
\includegraphics[max width=\textwidth, alt={}]{23bd8979-9ba6-4e77-a3d1-88feb5e5a5b3-1_444_728_1425_536}
The diagram shows the curve with parametric equations $$x = t + \sin t , \quad y = \sin t , \quad 0 \leq t \leq \pi$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find, in exact form, the coordinates of the point where the tangent to the curve is parallel to the \(x\)-axis.
OCR MEI C4 Q2
19 marks Standard +0.3
2 Fig. 7a shows the curve with the parametric equations $$x = 2 \cos \theta , \quad y = \sin 2 \theta , \quad - \frac { \pi } { 2 } \leqslant \theta \leqslant \frac { \pi } { 2 } .$$ The curve meets the \(x\)-axis at O and P . Q and R are turning points on the curve. The scales on the axes are the same. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-2_509_660_571_714} \captionsetup{labelformat=empty} \caption{Fig. 7a}
\end{figure}
  1. State, with their coordinates, the points on the curve for which \(\theta = - \frac { \pi } { 2 } , \theta = 0\) and \(\theta = \frac { \pi } { 2 }\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Hence find the gradient of the curve when \(\theta = \frac { \pi } { 2 }\), and verify that the two tangents to the curve at the origin meet at right angles.
  3. Find the exact coordinates of the turning point Q . When the curve is rotated about the \(x\)-axis, it forms a paperweight shape, as shown in Fig. 7b. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-2_324_389_1692_857} \captionsetup{labelformat=empty} \caption{Fig. 7b}
    \end{figure}
  4. Express \(\sin ^ { 2 } \theta\) in terms of \(x\). Hence show that the cartesian equation of the curve is \(y ^ { 2 } = x ^ { 2 } \left( 1 - \frac { 1 } { 4 } x ^ { 2 } \right)\).
  5. Find the volume of the paperweight shape.
OCR MEI C4 Q6
19 marks Standard +0.8
6 Fig. 8 illustrates a hot air balloon on its side. The balloon is modelled by the volume of revolution about the \(x\)-axis of the curve with parametric equations $$x = 2 + 2 \sin \theta , \quad y = 2 \cos \theta + \sin 2 \theta , \quad ( 0 \leqslant \theta \leqslant 2 \pi ) .$$ The curve crosses the \(x\)-axis at the point \(\mathrm { A } ( 4,0 )\). B and C are maximum and minimum points on the curve. Units on the axes are metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-6_812_801_517_706} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\).
  2. Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(\theta = \frac { 1 } { 6 } \pi\), and find the exact coordinates of B . Hence find the maximum width BC of the balloon.
  3. (A) Show that \(y = x \cos \theta\).
    (B) Find \(\sin \theta\) in terms of \(x\) and show that \(\cos ^ { 2 } \theta = x - \frac { 1 } { 4 } x ^ { 2 }\).
    (C) Hence show that the cartesian equation of the curve is \(y ^ { 2 } = x ^ { 3 } - \frac { 1 } { 4 } x ^ { 4 }\).
  4. Find the volume of the balloon.
OCR MEI C4 Q5
18 marks Standard +0.3
5 Part of the track of a roller-coaster is modelled by a curve with the parametric equations $$x = 2 \theta - \sin \theta , \quad y = 4 \cos \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi .$$ This is shown in Fig. 8. B is a minimum point, and BC is vertical. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c443a5b6-247d-411d-8371-4d6ebd5c3489-3_598_1443_598_385} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the values of the parameter at A and B . Hence show that the ratio of the lengths OA and AC is \(( \pi - 1 ) : ( \pi + 1 )\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Find the gradient of the track at A .
  3. Show that, when the gradient of the track is \(1 , \theta\) satisfies the equation $$\cos \theta - 4 \sin \theta = 2$$
  4. Express \(\cos \theta - 4 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\). Hence solve the equation \(\cos \theta - 4 \sin \theta = 2\) for \(0 \leqslant \theta \leqslant 2 \pi\).
OCR MEI C4 Q2
18 marks Challenging +1.2
2 Fig. 6 shows the arch ABCD of a bridge. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0c0a2fe7-9e69-470a-af2e-fa5fd41e4a27-2_378_1630_397_132} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure} The section from \(B\) to \(C\) is part of the curve \(O B C E\) with parametric equations $$x = a ( \theta - \sin \theta ) , y = a ( 1 - \cos \theta ) \text { for } 0 \leqslant \theta \leqslant 2 \pi \text {, }$$ where \(a\) is a constant.
  1. Find, in terms of \(a\),
    (A) the length of the straight line OE,
    (B) the maximum height of the arch.
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). The straight line sections AB and CD are inclined at \(30 ^ { \circ }\) to the horizontal, and are tangents to the curve at B and C respectively. BC is parallel to the \(x\)-axis. BF is parallel to the \(y\)-axis.
  3. Show that at the point B the parameter \(\theta\) satisfies the equation $$\sin \theta = \frac { 1 } { \sqrt { 3 } } ( 1 \quad \cos \theta ) .$$ Verify that \(\theta = \frac { 2 } { 3 } \pi\) is a solution of this equation.
    Hence show that \(\mathrm { BF } = \frac { 3 } { 2 } a\), and find OF in terms of \(a\), giving your answer exactly.
  4. Find BC and AF in terms of \(a\). Given that the straight line distance AD is 20 metres, calculate the value of \(a\).
OCR MEI C4 Q3
8 marks Standard +0.3
3 A curve has carlesian equation \(\mathrm { y } ^ { 2 } - \mathrm { x } _ { 2 } = 4\).
  1. Verify that $$\boldsymbol { x } = \boldsymbol { t } - - ^ { 1 } \quad \boldsymbol { t ^ { \prime } } \quad \boldsymbol { y } = \boldsymbol { t } + \frac { 1 } { \boldsymbol { t } ^ { \prime } }$$ are parametric equations of the curve.
    (u) Show lhat \(\left. \underset { d x } { \mathbf { d y } } = \frac { ( t - I ) ( r } { 12 + 1 } + 1 \right)\). Hence find the coordinates of the staionary points of the curve.
OCR MEI C4 Q1
19 marks Standard +0.8
1 Fig. 8 illustrates a hot air balloon on its side. The balloon is modelled by the volume of revolution about the \(x\)-axis of the curve with parametric equations $$x = 2 + 2 \sin \theta , \quad y = 2 \cos \theta + \sin 2 \theta , \quad ( 0 \leqslant \theta \leqslant 2 \pi ) .$$ The curve crosses the \(x\)-axis at the point \(\mathrm { A } ( 4,0 )\). B and C are maximum and minimum points on the curve. Units on the axes are metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1601927c-74d7-4cc2-a7f2-2c2a2e8c2c4c-1_812_809_517_704} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\).
  2. Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(\theta = \frac { 1 } { 6 } \pi\), and find the exact coordinates of B . Hence find the maximum width BC of the balloon.
  3. (A) Show that \(y = x \cos \theta\).
    (B) Find \(\sin \theta\) in terms of \(x\) and show that \(\cos ^ { 2 } \theta = x - \frac { 1 } { 4 } x ^ { 2 }\).
    (C) Hence show that the cartesian equation of the curve is \(y ^ { 2 } = x ^ { 3 } - \frac { 1 } { 4 } x ^ { 4 }\).
  4. Find the volume of the balloon.
OCR MEI C4 Q4
19 marks Standard +0.3
4 Fig. 7a shows the curve with the parametric equations $$x = 2 \cos \theta , \quad y = \sin 2 \theta , \quad - \frac { \pi } { 2 } \leqslant \theta \leqslant \frac { \pi } { 2 } .$$ The curve meets the \(x\)-axis at O and P . Q and R are turning points on the curve. The scales on the axes are the same. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1601927c-74d7-4cc2-a7f2-2c2a2e8c2c4c-4_509_660_571_714} \captionsetup{labelformat=empty} \caption{Fig. 7a}
\end{figure}
  1. State, with their coordinates, the points on the curve for which \(\theta = - \frac { \pi } { 2 } , \theta = 0\) and \(\theta = \frac { \pi } { 2 }\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Hence find the gradient of the curve when \(\theta = \frac { \pi } { 2 }\), and verify that the two tangents to the curve at the origin meet at right angles.
  3. Find the exact coordinates of the turning point Q . When the curve is rotated about the \(x\)-axis, it forms a paperweight shape, as shown in Fig. 7b. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1601927c-74d7-4cc2-a7f2-2c2a2e8c2c4c-4_324_389_1692_857} \captionsetup{labelformat=empty} \caption{Fig. 7b}
    \end{figure}
  4. Express \(\sin ^ { 2 } \theta\) in terms of \(x\). Hence show that the cartesian equation of the curve is \(y ^ { 2 } = x ^ { 2 } \left( 1 - \frac { 1 } { 4 } x ^ { 2 } \right)\).
  5. Find the volume of the paperweight shape.
  6. Express \(\frac { 3 } { ( y - 2 ) ( y + 1 ) }\) in partial fractions.
  7. Hence, given that \(x\) and \(y\) satisfy the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 } ( y - 2 ) ( y + 1 )$$ show that \(\frac { y - 2 } { y + 1 } = A \mathrm { e } ^ { x ^ { 3 } }\), where \(A\) is a constant.
OCR MEI C4 Q4
18 marks Standard +0.3
4 Part of the track of a roller-coaster is modelled by a curve with the parametric equations $$x = 2 \theta - \sin \theta , \quad y = 4 \cos \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi$$ This is shown in Fig. 8. B is a minimum point, and BC is vertical. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9ac55ae6-7a7f-47d0-a363-92da179be4ca-3_591_1437_433_391} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the values of the parameter at A and B . Hence show that the ratio of the lengths OA and AC is \(( \pi - 1 ) : ( \pi + 1 )\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Find the gradient of the track at A .
  3. Show that, when the gradient of the track is \(1 , \theta\) satisfies the equation $$\cos \theta - 4 \sin \theta = 2$$
  4. Express \(\cos \theta - 4 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\). Hence solve the equation \(\cos \theta - 4 \sin \theta = 2\) for \(0 \leqslant \theta \leqslant 2 \pi\).
OCR MEI FP2 2008 January Q5
18 marks Challenging +1.2
5 A curve has parametric equations \(x = \frac { t ^ { 2 } } { 1 + t ^ { 2 } } , y = t ^ { 3 } - \lambda t\), where \(\lambda\) is a constant.
  1. Use your calculator to obtain a sketch of the curve in each of the cases $$\lambda = - 1 , \quad \lambda = 0 \quad \text { and } \quad \lambda = 1 .$$ Name any special features of these curves.
  2. By considering the value of \(x\) when \(t\) is large, write down the equation of the asymptote. For the remainder of this question, assume that \(\lambda\) is positive.
  3. Find, in terms of \(\lambda\), the coordinates of the point where the curve intersects itself.
  4. Show that the two points on the curve where the tangent is parallel to the \(x\)-axis have coordinates $$\left( \frac { \lambda } { 3 + \lambda } , \pm \sqrt { \frac { 4 \lambda ^ { 3 } } { 27 } } \right)$$ Fig. 5 shows a curve which intersects itself at the point ( 2,0 ) and has asymptote \(x = 8\). The stationary points A and B have \(y\)-coordinates 2 and - 2 . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{43b4c7ed-3556-4d87-8aef-0111fe747982-4_791_609_1482_769} \captionsetup{labelformat=empty} \caption{Fig. 5}
    \end{figure}
  5. For the curve sketched in Fig. 5, find parametric equations of the form \(x = \frac { a t ^ { 2 } } { 1 + t ^ { 2 } } , y = b \left( t ^ { 3 } - \lambda t \right)\), where \(a , \lambda\) and \(b\) are to be determined.
OCR MEI FP2 2010 January Q5
18 marks Challenging +1.8
5 A line PQ is of length \(k\) (where \(k > 1\) ) and it passes through the point ( 1,0 ). PQ is inclined at angle \(\theta\) to the positive \(x\)-axis. The end Q moves along the \(y\)-axis. See Fig. 5. The end P traces out a locus. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d43d1e11-3173-47c4-88c9-0397c8630a39-4_639_977_552_584} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure}
  1. Show that the locus of P may be expressed parametrically as follows. $$x = k \cos \theta \quad y = k \sin \theta - \tan \theta$$ You are now required to investigate curves with these parametric equations, where \(k\) may take any non-zero value and \(- \frac { 1 } { 2 } \pi < \theta < \frac { 1 } { 2 } \pi\).
  2. Use your calculator to sketch the curve in each of the cases \(k = 2 , k = 1 , k = \frac { 1 } { 2 }\) and \(k = - 1\).
  3. For what value(s) of \(k\) does the curve have
    (A) an asymptote (you should state what the asymptote is),
    (B) a cusp,
    (C) a loop?
  4. For the case \(k = 2\), find the angle at which the curve crosses itself.
  5. For the case \(k = 8\), find in an exact form the coordinates of the highest point on the loop.
  6. Verify that the cartesian equation of the curve is $$y ^ { 2 } = \frac { ( x - 1 ) ^ { 2 } } { x ^ { 2 } } \left( k ^ { 2 } - x ^ { 2 } \right) .$$
OCR MEI FP2 2011 January Q5
18 marks Challenging +1.8
5 A curve has parametric equations $$x = t + a \sin t , \quad y = 1 - a \cos t$$ where \(a\) is a positive constant.
  1. Draw, on separate diagrams, sketches of the curve for \(- 2 \pi < t < 2 \pi\) in the cases \(a = 1 , a = 2\) and \(a = 0.5\). By investigating other cases, state the value(s) of \(a\) for which the curve has
    (A) loops,
    (B) cusps.
  2. Suppose that the point \(\mathrm { P } ( x , y )\) lies on the curve. Show that the point \(\mathrm { P } ^ { \prime } ( - x , y )\) also lies on the curve. What does this indicate about the symmetry of the curve?
  3. Find an expression in terms of \(a\) and \(t\) for the gradient of the curve. Hence find, in terms of \(a\), the coordinates of the turning points on the curve for \(- 2 \pi < t < 2 \pi\) and \(a \neq 1\).
  4. In the case \(a = \frac { 1 } { 2 } \pi\), show that \(t = \frac { 1 } { 2 } \pi\) and \(t = \frac { 3 } { 2 } \pi\) give the same point. Find the angle at which the curve crosses itself at this point.
OCR C4 2013 June Q9
9 marks Standard +0.3
9 A curve has parametric equations \(x = \frac { 1 } { t } - 1\) and \(y = 2 t + \frac { 1 } { t ^ { 2 } }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\), simplifying your answer.
  2. Find the coordinates of the stationary point and, by considering the gradient of the curve on either side of this point, determine its nature.
  3. Find a cartesian equation of the curve.
OCR C4 2016 June Q9
15 marks Standard +0.3
9 A curve has parametric equations \(x = 1 - \cos t , y = \sin t \sin 2 t\), for \(0 \leqslant t \leqslant \pi\).
  1. Find the coordinates of the points where the curve meets the \(x\)-axis.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 \cos 2 t + 2 \cos ^ { 2 } t\). Hence find, in an exact form, the coordinates of the stationary points.
  3. Find the cartesian equation of the curve. Give your answer in the form \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x )\) is a polynomial.
  4. Sketch the curve.
OCR MEI C4 2009 January Q8
19 marks Standard +0.8
8 Fig. 8 illustrates a hot air balloon on its side. The balloon is modelled by the volume of revolution about the \(x\)-axis of the curve with parametric equations $$x = 2 + 2 \sin \theta , \quad y = 2 \cos \theta + \sin 2 \theta , \quad ( 0 \leqslant \theta \leqslant 2 \pi ) .$$ The curve crosses the \(x\)-axis at the point \(\mathrm { A } ( 4,0 )\). B and C are maximum and minimum points on the curve. Units on the axes are metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f61b7d80-8e21-4720-8e8c-259531c1b305-4_821_809_575_667} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\).
  2. Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(\theta = \frac { 1 } { 6 } \pi\), and find the exact coordinates of B . Hence find the maximum width BC of the balloon.
  3. (A) Show that \(y = x \cos \theta\).
    (B) Find \(\sin \theta\) in terms of \(x\) and show that \(\cos ^ { 2 } \theta = x - \frac { 1 } { 4 } x ^ { 2 }\).
    (C) Hence show that the cartesian equation of the curve is \(y ^ { 2 } = x ^ { 3 } - \frac { 1 } { 4 } x ^ { 4 }\).
  4. Find the volume of the balloon.