CAIE P2 2016 November — Question 6

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2016
SessionNovember
TopicParametric equations

6 A curve has parametric equations $$x = \ln ( t + 1 ) , \quad y = t ^ { 2 } \ln t$$
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find the exact value of \(t\) at the stationary point.
  3. Find the gradient of the curve at the point where it crosses the \(x\)-axis.
  4. Express \(\sin 2 \theta ( 3 \sec \theta + 4 \operatorname { cosec } \theta )\) in the form \(a \sin \theta + b \cos \theta\), where \(a\) and \(b\) are integers.
  5. Hence express \(\sin 2 \theta ( 3 \sec \theta + 4 \operatorname { cosec } \theta )\) in the form \(R \sin ( \theta + \alpha )\) where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  6. Using the result of part (ii), solve the equation \(\sin 2 \theta ( 3 \sec \theta + 4 \operatorname { cosec } \theta ) = 7\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).