Edexcel C34 2017 January — Question 13

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2017
SessionJanuary
TopicParametric equations

13. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e30f0c28-1695-40a1-8e9a-6ea7e29042bf-24_515_750_264_598} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} The curve \(C\) shown in Figure 4 has parametric equations $$x = 1 + \sqrt { 3 } \tan \theta , \quad y = 5 \sec \theta , \quad - \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 }$$ The curve \(C\) crosses the \(y\)-axis at \(A\) and has a minimum turning point at \(B\), as shown in Figure 4.
  1. Find the exact coordinates of \(A\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \lambda \sin \theta\), giving the exact value of the constant \(\lambda\).
  3. Find the coordinates of \(B\).
  4. Show that the cartesian equation for the curve \(C\) can be written in the form $$y = k \sqrt { \left( x ^ { 2 } - 2 x + 4 \right) }$$ where \(k\) is a simplified surd to be found.