4 Fig. 7a shows the curve with the parametric equations
$$x = 2 \cos \theta , \quad y = \sin 2 \theta , \quad - \frac { \pi } { 2 } \leqslant \theta \leqslant \frac { \pi } { 2 } .$$
The curve meets the \(x\)-axis at O and P . Q and R are turning points on the curve. The scales on the axes are the same.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1601927c-74d7-4cc2-a7f2-2c2a2e8c2c4c-4_509_660_571_714}
\captionsetup{labelformat=empty}
\caption{Fig. 7a}
\end{figure}
- State, with their coordinates, the points on the curve for which \(\theta = - \frac { \pi } { 2 } , \theta = 0\) and \(\theta = \frac { \pi } { 2 }\).
- Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Hence find the gradient of the curve when \(\theta = \frac { \pi } { 2 }\), and verify that the two tangents to the curve at the origin meet at right angles.
- Find the exact coordinates of the turning point Q .
When the curve is rotated about the \(x\)-axis, it forms a paperweight shape, as shown in Fig. 7b.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1601927c-74d7-4cc2-a7f2-2c2a2e8c2c4c-4_324_389_1692_857}
\captionsetup{labelformat=empty}
\caption{Fig. 7b}
\end{figure} - Express \(\sin ^ { 2 } \theta\) in terms of \(x\). Hence show that the cartesian equation of the curve is \(y ^ { 2 } = x ^ { 2 } \left( 1 - \frac { 1 } { 4 } x ^ { 2 } \right)\).
- Find the volume of the paperweight shape.
- Express \(\frac { 3 } { ( y - 2 ) ( y + 1 ) }\) in partial fractions.
- Hence, given that \(x\) and \(y\) satisfy the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 } ( y - 2 ) ( y + 1 )$$
show that \(\frac { y - 2 } { y + 1 } = A \mathrm { e } ^ { x ^ { 3 } }\), where \(A\) is a constant.