AQA FP2 — Question 6

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicComplex numbers 2

6 It is given that \(z = \mathrm { e } ^ { \mathrm { i } \theta }\).
    1. Show that $$z + \frac { 1 } { z } = 2 \cos \theta$$ (2 marks)
    2. Find a similar expression for $$z ^ { 2 } + \frac { 1 } { z ^ { 2 } }$$ (2 marks)
    3. Hence show that $$z ^ { 2 } - z + 2 - \frac { 1 } { z } + \frac { 1 } { z ^ { 2 } } = 4 \cos ^ { 2 } \theta - 2 \cos \theta$$ (3 marks)
  1. Hence solve the quartic equation $$z ^ { 4 } - z ^ { 3 } + 2 z ^ { 2 } - z + 1 = 0$$ giving the roots in the form \(a + \mathrm { i } b\).

6 It is given that $z = \mathrm { e } ^ { \mathrm { i } \theta }$.\\
(a) (i) Show that

$$z + \frac { 1 } { z } = 2 \cos \theta$$

(2 marks)\\
(ii) Find a similar expression for

$$z ^ { 2 } + \frac { 1 } { z ^ { 2 } }$$

(2 marks)\\
(iii) Hence show that

$$z ^ { 2 } - z + 2 - \frac { 1 } { z } + \frac { 1 } { z ^ { 2 } } = 4 \cos ^ { 2 } \theta - 2 \cos \theta$$

(3 marks)\\
(b) Hence solve the quartic equation

$$z ^ { 4 } - z ^ { 3 } + 2 z ^ { 2 } - z + 1 = 0$$

giving the roots in the form $a + \mathrm { i } b$.

\hfill \mbox{\textit{AQA FP2  Q6}}