AQA FP2 — Question 3

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicComplex Numbers Argand & Loci

3 The complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are given by $$z _ { 1 } = \frac { 1 + \mathrm { i } } { 1 - \mathrm { i } } \quad \text { and } \quad z _ { 2 } = \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \mathrm { i }$$
  1. Show that \(z _ { 1 } = \mathrm { i }\).
  2. Show that \(\left| z _ { 1 } \right| = \left| z _ { 2 } \right|\).
  3. Express both \(z _ { 1 }\) and \(z _ { 2 }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  4. Draw an Argand diagram to show the points representing \(z _ { 1 } , z _ { 2 }\) and \(z _ { 1 } + z _ { 2 }\).
  5. Use your Argand diagram to show that $$\tan \frac { 5 } { 12 } \pi = 2 + \sqrt { 3 }$$

3 The complex numbers $z _ { 1 }$ and $z _ { 2 }$ are given by

$$z _ { 1 } = \frac { 1 + \mathrm { i } } { 1 - \mathrm { i } } \quad \text { and } \quad z _ { 2 } = \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \mathrm { i }$$

(a) Show that $z _ { 1 } = \mathrm { i }$.\\
(b) Show that $\left| z _ { 1 } \right| = \left| z _ { 2 } \right|$.\\
(c) Express both $z _ { 1 }$ and $z _ { 2 }$ in the form $r \mathrm { e } ^ { \mathrm { i } \theta }$, where $r > 0$ and $- \pi < \theta \leqslant \pi$.\\
(d) Draw an Argand diagram to show the points representing $z _ { 1 } , z _ { 2 }$ and $z _ { 1 } + z _ { 2 }$.\\
(e) Use your Argand diagram to show that

$$\tan \frac { 5 } { 12 } \pi = 2 + \sqrt { 3 }$$

\hfill \mbox{\textit{AQA FP2  Q3}}