AQA FP2 — Question 5

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicComplex Numbers Argand & Loci

5 The complex number \(z\) satisfies the relation $$| z + 4 - 4 i | = 4$$
  1. Sketch, on an Argand diagram, the locus of \(z\).
  2. Show that the greatest value of \(| z |\) is \(4 ( \sqrt { 2 } + 1 )\).
  3. Find the value of \(z\) for which $$\arg ( z + 4 - 4 \mathrm { i } ) = \frac { 1 } { 6 } \pi$$ Give your answer in the form \(a + \mathrm { i } b\).

5 The complex number $z$ satisfies the relation

$$| z + 4 - 4 i | = 4$$

(a) Sketch, on an Argand diagram, the locus of $z$.\\
(b) Show that the greatest value of $| z |$ is $4 ( \sqrt { 2 } + 1 )$.\\
(c) Find the value of $z$ for which

$$\arg ( z + 4 - 4 \mathrm { i } ) = \frac { 1 } { 6 } \pi$$

Give your answer in the form $a + \mathrm { i } b$.

\hfill \mbox{\textit{AQA FP2  Q5}}