| Exam Board | AQA |
|---|---|
| Module | FP2 (Further Pure Mathematics 2) |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Complex Numbers Argand & Loci |
5 The complex number $z$ satisfies the relation
$$| z + 4 - 4 i | = 4$$
(a) Sketch, on an Argand diagram, the locus of $z$.\\
(b) Show that the greatest value of $| z |$ is $4 ( \sqrt { 2 } + 1 )$.\\
(c) Find the value of $z$ for which
$$\arg ( z + 4 - 4 \mathrm { i } ) = \frac { 1 } { 6 } \pi$$
Give your answer in the form $a + \mathrm { i } b$.
\hfill \mbox{\textit{AQA FP2 Q5}}