| Exam Board | CAIE |
|---|---|
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2017 |
| Session | June |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Complex numbers 2 |
8 (i) Let $z = \cos \theta + \mathrm { i } \sin \theta$. Show that $z - \frac { 1 } { z } = 2 \mathrm { i } \sin \theta$ and hence express $16 \sin ^ { 5 } \theta$ in the form $\sin 5 \theta + p \sin 3 \theta + q \sin \theta$, where $p$ and $q$ are integers to be determined.\\
(ii) Hence find the exact value of $\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } 16 \sin ^ { 5 } \theta \mathrm {~d} \theta$.\\
\hfill \mbox{\textit{CAIE FP1 2017 Q8}}